Implementation Inheritance

An introduction to the Java Programming
Language

Produced Eamonn de Leastar (edeleastar@wit.ie)
OY: Dr. Siobhan Drohan (sdrohan@wit.ie)

@ aterford Institute of Technology
a (J’ INSTITIUID TEICNEOLAIOCHTA PHORT LAIRGE
\a,— o

Essential Java

4 Overview
< Introduction
4 Syntax
4 Basics
< Arrays
¢ Classes
¢ Classes Structure
4 Static Members

< Commonly used
Classes

< Control Statements

< Control Statement
Types

< |f, else, switch
< For, while, do-while

< Inheritance

< Class hierarchies

4 Method lookup in
Java

4 Use of this and super

% Constructors and
inheritance

< Abstract classes and
methods

< |nterfaces

« Collections

< ArraylList

< HashMap
4 |terator

% Vector

< Enumeration
< Hashtable

< Exceptions
< Exception types
< Exception Hierarchy
4 Catching exceptions

< Throwing
exceptions

< Defining exceptions

Common exceptions
and errors

< Streams
4 Stream types
< Character streams
< Byte streams
< Filter streams
4 Object Serialization

Agenda

< What is inheritance?
4 Implementation Inheritance
< Method lookup in Java
4 Use of this and super
¢ Constructors and inheritance

< Abstract classes and methods

What is Inheritance?

% Inheritance is one of the primary object-oriented
principles.

Implementation Interface
Inheritance Inheritance
* Promotes reuse. * Mechanism for

introducing Types

« Commonalities are L .
Into java design.

stored in a parent
class (superclass). * Classes can support
more than one
interface, i.e. be of
more than one type.

« Commonalities are
shared between
children classes
(subclasses).

generalization

Implementation Inheritance

olicy

client
oremium
oolicyNumber

getClient
setClient

AN

Homerolicy

AUtOPolicy

LifeFPolicy

nouse

auto

uonezijenads

getHouse
setHouse

getAuto
setAuto

Defining Inheritance

public

class Policy {..

class HomePolicy extends Policy({..
class AutoPolicy extends Policy{..
class LifePolicy extends Policy({..

Policy
client pub lic
premium .
policyNumber publ 1C
getClient pub]_ ic
setClient
[- R

HomePolicy AutoPolicy LifePolicy

house auto

getHouse getAuto

setHouse setAuto

Defining Inheritance

public class Policy {..
Policy
:t$m1 public class HomePolicy extends Policy{..
policyNumber public class AutoPolicy extends Policy({..
%%Fm public class LifePolicy extends Policy({..
setClient
[%]

HomePolicy AutoPolicy LifePolicy

house auto

getHouse getAuto

setHouse setAuto

4 If the class does not explicitly specify a
superclass, its superclass is Object class.

public class Policy{..

public class Policy extends Object({..

Variables and Inheritance

4-Variables can be declared against the superclass, and
assigned objects of the subclass.

Policy policy;

policy = new Policy (), Policy
client
pre_mium
Policy policy; policyNumber
. , getClient
policy = new HomePolicy () setClient
: ' | ZI} |
Policy policy; HomePolicy AutoPolicy LifePolicy

house auto

policy = new AutoPolicy();

getHouse getAuto
setHouse setAuto

Policy policy;

policy = new LifePolicy ()

What is Inherited?

4 Subclasses inherit from superclass:

<4 Fields (instance variables) i.e. data.

< Methods i.e. behaviours.

Policy

client
premium
policyNumber

getClient
setClient

JAN

HomePolicy

AutoPolicy

1
LifePolicy

house

auto

getHouse
setHouse

getAuto
setAuto

Inheriting Fields

< All fields from superclasses are inherited by a subclass.
% Inheritance goes all the way up the hierarchy.

S Policy
P,OIICy' client
Client premium
premium policyNumber
policyNumber getClient
setClient
4\
- . -
HomePolicy: HomePolicy AutoPolicy LifePolicy
clent house auto
premium
' getHouse getAuto
ﬁgiﬁye Number setHouse setAuto

10

Inheriting Methods

< All methods from superclasses are inherited by a subclass
% Inheritance goes all the way up the hierarchy

] Policy

Policy: Tt
getClient premium
setClient policyNumber

getClient

setClient

AN
- ! i
HomlePollcy_ HomePolicy AutoPolicy LifePolicy
getClient Fouse =
setClient
o getHouse getAuto
getiHouse setHouse setAuto
setHouse
11

Agenda

< What is inheritance?

4 Implementation Inheritance

< Method lookup in Java

4 Use of this and super

© Constructors and inheritance

< Abstract classes and methods

12

Method Lookup

HomePolicy homePolicy = new HomePolicy() ;

homePolicy.getPremium() ;

Folicy
oremium
Policy class — method getPremium
getPremium() is setPremium
found. 7\
HomePolicy
nhouse
HomePolicy class — method |getHouse
getPremium() is not found. “|setHouse

13

this vs. super

4 They are both names of the receiver object:

4 this: used for pointing to the current class instance.

< super: lookup begins in the superclass of the class where
super was defined.

{

class HomePolicy extends Policy

private int instalments;
private String house;

public void setInstalments (int instalments) {
this.instalments = instalments;

}

public void print () {

super.print() ;

System.out.println("for house " + getHouse() .toString() ;
}

//..

14

getClass()

< getClass() java.lang
< Method in java.lang.Object.
4 |t returns the runtime class Class Class<T>

of the receiver object e.g. %

com.example.HomePolicy java.lang.Object

java.lang.Class<T>

J

< getClass().getName()
4 Method in java.lang.Class.

< |t returns the name of the
class or interface of the
receiver object e.q.

HomePolicy

15

class Policy

{

}

//..
public void print ()
{
System.out.println("A " + getClass() .getName() + ", $" + getPremium()) ;
}
//..

Policy p = new Policy(); |:>A Policy, $1,200.00

p.print();
class HomePolicy extends Policy 16
{
//.. .
public void print() ijij
{ AN
super.print() ;
System.out.println("for house " + getHouse() .toString() ; .
} HomerFolicy
/..
}
HomePolicy h = new HomePolicy() ; A HomePolicy, $1,200.00
h.print() ; [:> for house 200 Great Street

16

Method Overriding

< |f a class defines the same method

as its superclass, it is said that the —oicy

AN

method is overridden

< Method signatures must match .
9 —Homerolicy
//Method in the Policy class
public void print()
{
System.out.println("A " + getClass().getName() + ", $" + getPremium());

}

//Overridden method in the HomePolicy class
public void print()
{
super.print() ;
System.out.println("for house " + getHouse () .toString() ;
}

17

Agenda

< What is inheritance?
4 Implementation Inheritance
< Method lookup in Java

4 Use of this and super

© Constructors and inheritance

< Abstract classes and methods

18

Constructors and Inheritance

public Policy (double
{
this.premium
this.policyNumber
this.client

premium, Client aClient,

= premium;
= policyNumber;
= aClient;

String policyNumber)

Folicy
/\

Homerolicy

public HomePolicy (double premium,
Client aClient,
String policyNumber,

House aHouse)

{ < First line must be
super (premium, aClient, policyNumber) ; <'1:| a call to the Super
this.house = aHouse;

) constructor

19

Constructors and Inheritance

< Constructors are not inherited by the subclasses.

< If the call is not coded explicitly then an implicit zero-
argument super() is called.

4 |If the superclass does not have a zero-argument
constructor, this causes an error.

< Adopting this approach eventually leads to the Object
class constructor that creates the object.

Overview: Road Map

< What is inheritance?

4 Implementation Inheritance
+Method lookup in Java
< Use of this and super

< Constructors and inheritance

« Abstract classes and methods

21

Defining Abstract Classes

public abstract class Policy {

// can contain zero or more abstract methods.

// a class that has an abstract method must be declared abstract.

// cannot create an instance of this abstract class.

}

27

Defining Abstract Classes

public abstract class Policy {

// can contain zero or more abstract methods.

// a class that has an abstract method must be declared abstract.
// cannot create an instance of this abstract class.

}
Concrete Abstract class
Subclasses] functions as a
complete the Policy | “base” for
implementation. [ebostract <,: subclasses.
% /\
—Homeralicy AutoPolicy LifeFPolicy

23

Defining Abstract Methods

public abstract class Policy

{

// abstract classes can contain concrete methods as well.
// abstract classes are not required to have abstract methods.

/* each subclass must have a concrete implementation of the abstract
method, or make themselves abstract. */

public abstract void calculateFullPremium();

}

24

Defining Abstract Methods

public abstract class Policy

{

// abstract classes can contain concrete methods as well.
// abstract classes are not required to have abstract methods.

/* each subclass must have a concrete implementation of the abstract
method, or make themselves abstract. */

public abstract void calculateFullPremium();

}
Policy (abstract)
- | | Ab
calculateFuliPrermium <,l: mesttf: (a);t
Z\

Homerolicy AUtoPolicy LifeFolicy

Defining Abstract Methods

public class HomePolicy extends Policy

{
/7 ...

public void calculateFullPremium /()

{

//calculation may depend on a criteria about the house

}

public class AutoPolicy extends Policy

{
/7.

public void calculateFullPremium /()

{

//calculation may depend on a criteria about the auto

}

All subclasses
must
iImplement all
abstract
methods

public class LifePolicy extends Policy

{
// ...

public void calculateFullPremium /()

{

//calculation may depend on a criteria about the client

20

Summary

< What is inheritance?
4 Implementation Inheritance
< Method lookup in Java
4 Use of this and super
¢ Constructors and inheritance

< Abstract classes and methods

2

Multiple Inheritance ?

A

AN
x_/%

D

A

/

AN

v

D

< Not supported in Java.
WHY?

Thought Experiment: Multiple Inheritance

¢ Let’s pretend that Java allows multiple

inheritance

29
http://javacodeonline.blogspot.ie/2009/08/deadly-diamond-of-death.html

Thought Experiment: Multiple Inheritance

public abstract class AbstractSuperClass{
abstract void do();

}

30
http://javacodeonline.blogspot.ie/2009/08/deadly-diamond-of-death.html

Thought Experiment: Multiple Inheritance

public abstract class AbstractSuperClass{
abstract void do();

}

public class ConcreteOne extends AbstractSuperClass{
void do(){
System.out.printin("l am testing multiple Inheritance");

}
}

31
http://javacodeonline.blogspot.ie/2009/08/deadly-diamond-of-death.html

Thought Experiment: Multiple Inheritance

public abstract class AbstractSuperClass{
abstract void do();

}

public class ConcreteOne extends AbstractSuperClass{
void do()f

}

}

System.out.printin("l am testing multiple Inheritance");

public class ConcreteTwo extends AbstractSuperClass{

}

void do()f
System.out.printin("l will cause the Deadly Diamond of Death");

}

Each class provides their own implementation of void do()

32
http://javacodeonline.blogspot.ie/2009/08/deadly-diamond-of-death.html

Thought Experiment: Multiple Inheritance

% So far, our class diagram looks like this:

<<abstract>>
AbstractSuperClass

TN

ConcreteOne ConcreteTwo

4 No problems, yet...

33
http://javacodeonline.blogspot.ie/2009/08/deadly-diamond-of-death.html

Thought Experiment: Multiple Inheritance

4 Now, if multiple inheritance were allowed, a fourth class
comes into picture which extends the above two
concrete classes.

public class DiamondEffect extends ConcreteOne, ConcreteTwo{
//Some methods of this class

}

34
http://javacodeonline.blogspot.ie/2009/08/deadly-diamond-of-death.html

Thought Experiment: Multiple Inheritance

< Diamond shape class diagram

<<abstract>>
AbstractSuperClass

TN

ConcreteOne ConcreteTwo

~._

DiamondEffect

35
http://javacodeonline.blogspot.ie/2009/08/deadly-diamond-of-death.html

Thought Experiment: Multiple Inheritance

« The DiamondEffect class
Inherits all the methods of
the parent classes. STe—

< BUT we have a common AbstractSuperClass

method, void do(), in the two /\

concrete classes, each with ConretaOne ConereteTu

a different implementation.
4 So which void do() \/

Implementation will be used DiamondEffect
for the DiamondEffect class

as it inherits both these

classes?

36
http://javacodeonline.blogspot.ie/2009/08/deadly-diamond-of-death.html

Deadly Diamond of Death

Actually this is a critical issue that the java
designers wanted to avoid, so, the result
was...

(although it is
supported in C++ via
Virtual Base class
feature)

37
http://javacodeonline.blogspot.ie/2009/08/deadly-diamond-of-death.html

