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4 Implementation Inheritance
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What is Inheritance?

% Inheritance is one of the primary object-oriented
principles.

Implementation Interface
Inheritance Inheritance
* Promotes reuse. * Mechanism for

introducing Types

« Commonalities are L .
Into java design.

stored in a parent
class (superclass). * Classes can support
more than one
interface, i.e. be of
more than one type.

« Commonalities are
shared between
children classes
(subclasses).
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Defining Inheritance

public

class Policy {..

class HomePolicy extends Policy({..
class AutoPolicy extends Policy{..
class LifePolicy extends Policy({..
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Defining Inheritance

public class Policy {..
Policy
:t$m1 public class HomePolicy extends Policy{..
policyNumber public class AutoPolicy extends Policy({..
%%Fm public class LifePolicy extends Policy({..
setClient
[ % ]

HomePolicy AutoPolicy LifePolicy

house auto

getHouse getAuto

setHouse setAuto

4 If the class does not explicitly specify a
superclass, its superclass is Object class.

public class Policy{..

public class Policy extends Object({..




Variables and Inheritance

4-Variables can be declared against the superclass, and
assigned objects of the subclass.

Policy policy;

policy = new Policy (), Policy
client
pre_mium
Policy policy; policyNumber
. , getClient
policy = new HomePolicy () setClient
: ' | ZI} |
Policy policy; HomePolicy AutoPolicy LifePolicy

house auto

policy = new AutoPolicy();

getHouse getAuto
setHouse setAuto

Policy policy;

policy = new LifePolicy ()




What is Inherited?

4 Subclasses inherit from superclass:

<4 Fields (instance variables) i.e. data.

< Methods i.e. behaviours.
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Inheriting Fields

< All fields from superclasses are inherited by a subclass.
% Inheritance goes all the way up the hierarchy.

S Policy
P,OIICy' client
Client premium
premium policyNumber
policyNumber getClient
setClient
4\
- . -
HomePolicy: HomePolicy AutoPolicy LifePolicy
clent house auto
premium
' getHouse getAuto
ﬁgiﬁye Number setHouse setAuto
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Inheriting Methods

< All methods from superclasses are inherited by a subclass
% Inheritance goes all the way up the hierarchy

] Policy

Policy: Tt
getClient premium
setClient policyNumber

getClient

setClient

AN
- ! i
HomlePollcy_ HomePolicy AutoPolicy LifePolicy
getClient Fouse =
setClient
o getHouse getAuto
getiHouse setHouse setAuto
setHouse
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Agenda

< What is inheritance?

4 Implementation Inheritance

< Method lookup in Java

4 Use of this and super

© Constructors and inheritance

< Abstract classes and methods
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Method Lookup

HomePolicy homePolicy = new HomePolicy() ;

homePolicy.getPremium() ;

Folicy
oremium
Policy class — method getPremium
getPremium() is setPremium
found. 7\
HomePolicy
nhouse
HomePolicy class — method |getHouse
getPremium() is not found. “|setHouse
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this vs. super

4 They are both names of the receiver object:

4 this: used for pointing to the current class instance.

< super: lookup begins in the superclass of the class where
super was defined.

{

class HomePolicy extends Policy

private int instalments;
private String house;

public void setInstalments (int instalments) {
this.instalments = instalments;

}

public void print () {

super.print() ;

System.out.println("for house " + getHouse() .toString() ;
}

//..
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getClass()

< getClass() java.lang
< Method in java.lang.Object.
4 |t returns the runtime class Class Class<T>

of the receiver object e.g. %

com.example.HomePolicy java.lang.Object

java.lang.Class<T>

J

< getClass().getName()
4 Method in java.lang.Class.

< |t returns the name of the
class or interface of the
receiver object e.q.

HomePolicy
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class Policy

{

}

//..
public void print ()
{
System.out.println("A " + getClass() .getName() + ", $" + getPremium()) ;
}
//..

Policy p = new Policy(); |:>A Policy, $1,200.00

p.print();
class HomePolicy extends Policy 16
{
//.. .
public void print() ijij
{ AN
super.print() ;
System.out.println("for house " + getHouse() .toString() ; .
} HomerFolicy
/..
}
HomePolicy h = new HomePolicy() ; A HomePolicy, $1,200.00
h.print() ; [:> for house 200 Great Street
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Method Overriding

< |f a class defines the same method

as its superclass, it is said that the —oicy

AN

method is overridden

< Method signatures must match .
9 —Homerolicy
//Method in the Policy class
public void print()
{
System.out.println("A " + getClass().getName() + ", $" + getPremium());

}

//Overridden method in the HomePolicy class
public void print()
{
super.print() ;
System.out.println("for house " + getHouse () .toString() ;
}
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Agenda

< What is inheritance?
4 Implementation Inheritance
< Method lookup in Java

4 Use of this and super

© Constructors and inheritance

< Abstract classes and methods
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Constructors and Inheritance

public Policy (double
{
this.premium
this.policyNumber
this.client

premium, Client aClient,

= premium;
= policyNumber;
= aClient;

String policyNumber)

Folicy
/\

Homerolicy

public HomePolicy (double premium,
Client aClient,
String policyNumber,

House aHouse)

{ < First line must be
super (premium, aClient, policyNumber) ; <'1:| a call to the Super
this.house = aHouse;

) constructor

19



Constructors and Inheritance

< Constructors are not inherited by the subclasses.

< If the call is not coded explicitly then an implicit zero-
argument super() is called.

4 |If the superclass does not have a zero-argument
constructor, this causes an error.

< Adopting this approach eventually leads to the Object
class constructor that creates the object.



Overview: Road Map

< What is inheritance?

4 Implementation Inheritance
+Method lookup in Java
< Use of this and super

< Constructors and inheritance

« Abstract classes and methods
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Defining Abstract Classes

public abstract class Policy {

// can contain zero or more abstract methods.

// a class that has an abstract method must be declared abstract.

// cannot create an instance of this abstract class.

}
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Defining Abstract Classes

public abstract class Policy {

// can contain zero or more abstract methods.

// a class that has an abstract method must be declared abstract.
// cannot create an instance of this abstract class.

}
Concrete Abstract class
Subclasses ] functions as a
complete the Policy | “base” for
implementation. [ebostract <,: subclasses.
% /\
—Homeralicy AutoPolicy LifeFPolicy
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Defining Abstract Methods

public abstract class Policy

{

// abstract classes can contain concrete methods as well.
// abstract classes are not required to have abstract methods.

/* each subclass must have a concrete implementation of the abstract
method, or make themselves abstract. */

public abstract void calculateFullPremium();

}
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Defining Abstract Methods

public abstract class Policy

{

// abstract classes can contain concrete methods as well.
// abstract classes are not required to have abstract methods.

/* each subclass must have a concrete implementation of the abstract
method, or make themselves abstract. */

public abstract void calculateFullPremium();

}
Policy (abstract)
- | | Ab
calculateFuliPrermium <,l: mesttf: (a);t
Z\

Homerolicy AUtoPolicy LifeFolicy




Defining Abstract Methods

public class HomePolicy extends Policy

{
/7 ...

public void calculateFullPremium /()

{

//calculation may depend on a criteria about the house

}

public class AutoPolicy extends Policy

{
/7.

public void calculateFullPremium /()

{

//calculation may depend on a criteria about the auto

}

All subclasses
must
iImplement all
abstract
methods

public class LifePolicy extends Policy

{
// ...

public void calculateFullPremium /()

{

//calculation may depend on a criteria about the client
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Summary

< What is inheritance?
4 Implementation Inheritance
< Method lookup in Java
4 Use of this and super
¢ Constructors and inheritance

< Abstract classes and methods
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Multiple Inheritance ?

A
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x\_/%

D
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/
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v

D

< Not supported in Java.
WHY?




Thought Experiment: Multiple Inheritance

¢ Let’s pretend that Java allows multiple

inheritance

29
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Thought Experiment: Multiple Inheritance

public abstract class AbstractSuperClass{
abstract void do();

}
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Thought Experiment: Multiple Inheritance

public abstract class AbstractSuperClass{
abstract void do();

}

public class ConcreteOne extends AbstractSuperClass{
void do(){
System.out.printin("l am testing multiple Inheritance");

}
}

31
http://javacodeonline.blogspot.ie/2009/08/deadly-diamond-of-death.html



Thought Experiment: Multiple Inheritance

public abstract class AbstractSuperClass{
abstract void do();

}

public class ConcreteOne extends AbstractSuperClass{
void do()f

}

}

System.out.printin("l am testing multiple Inheritance");

public class ConcreteTwo extends AbstractSuperClass{

}

void do()f
System.out.printin("l will cause the Deadly Diamond of Death");

}

Each class provides their own implementation of void do()
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Thought Experiment: Multiple Inheritance

% So far, our class diagram looks like this:

<<abstract>>
AbstractSuperClass

TN

ConcreteOne ConcreteTwo

4 No problems, yet...

33
http://javacodeonline.blogspot.ie/2009/08/deadly-diamond-of-death.html



Thought Experiment: Multiple Inheritance

4 Now, if multiple inheritance were allowed, a fourth class
comes into picture which extends the above two
concrete classes.

public class DiamondEffect extends ConcreteOne, ConcreteTwo{
//Some methods of this class

}
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Thought Experiment: Multiple Inheritance

< Diamond shape class diagram

<<abstract>>
AbstractSuperClass

TN

ConcreteOne ConcreteTwo

~._

DiamondEffect
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Thought Experiment: Multiple Inheritance

« The DiamondEffect class
Inherits all the methods of
the parent classes. STe—

< BUT we have a common AbstractSuperClass

method, void do(), in the two /\

concrete classes, each with ConretaOne ConereteTu

a different implementation.
4 So which void do() \/

Implementation will be used DiamondEffect
for the DiamondEffect class

as it inherits both these

classes?
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Deadly Diamond of Death

Actually this is a critical issue that the java
designers wanted to avoid, so, the result
was...

(although it is
supported in C++ via
Virtual Base class
feature)
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