
Implementation Inheritance
An introduction to the Java Programming
Language

Produced
by:

Eamonn de Leastar (edeleastar@wit.ie)
Dr. Siobhan Drohan (sdrohan@wit.ie)

Essential Java
± Overview

± Introduction
± Syntax
± Basics
± Arrays

± Classes
± Classes Structure
± Static Members
± Commonly used

Classes
± Control Statements

± Control Statement
Types

± If, else, switch
± For, while, do-while

± Inheritance
± Class hierarchies
± Method lookup in

Java
± Use of this and super
± Constructors and

inheritance
± Abstract classes and

methods
± Interfaces

± Collections
± ArrayList
± HashMap
± Iterator
± Vector
± Enumeration
± Hashtable

± Exceptions
± Exception types
± Exception Hierarchy
± Catching exceptions
± Throwing

exceptions
± Defining exceptions
Common exceptions

and errors
± Streams

± Stream types
± Character streams
± Byte streams
± Filter streams
± Object Serialization

Agenda

± What is inheritance?

± Implementation Inheritance

±Method lookup in Java

±Use of this and super

±Constructors and inheritance

±Abstract classes and methods

3

What is Inheritance?

± Inheritance is one of the primary object-oriented
principles.

Implementation
Inheritance

Interface
Inheritance

• Promotes reuse.
• Commonalities are

stored in a parent
class (superclass).

• Commonalities are
shared between
children classes
(subclasses).

• Mechanism for
introducing Types
into java design.

• Classes can support
more than one
interface, i.e. be of
more than one type.

4

Implementation Inheritance
Policy

client
premium
policyNumber
getClient
setClient
…

HomePolicy
house

getHouse
setHouse

AutoPolicy
auto

getAuto
setAuto

LifePolicy

specialization

5

Defining Inheritance
public class Policy {…

public class HomePolicy extends Policy{…
public class AutoPolicy extends Policy{…
public class LifePolicy extends Policy{…

6

Defining Inheritance

±If the class does not explicitly specify a
superclass, its superclass is Object class.

public class Policy {…

public class HomePolicy extends Policy{…
public class AutoPolicy extends Policy{…
public class LifePolicy extends Policy{…

public class Policy{… public class Policy extends Object{…

7

Variables and Inheritance

±Variables can be declared against the superclass, and
assigned objects of the subclass.

Policy policy;
policy = new Policy();

Policy policy;
policy = new HomePolicy();

Policy policy;
policy = new AutoPolicy();

Policy policy;
policy = new LifePolicy();

8

What is Inherited?

± Subclasses inherit from superclass:
± Fields (instance variables) i.e. data.
± Methods i.e. behaviours.

9

Inheriting Fields

± All fields from superclasses are inherited by a subclass.
± Inheritance goes all the way up the hierarchy.

Policy:
client
premium
policyNumber

HomePolicy:
client
premium
policyNumber
house

10

Inheriting Methods

± All methods from superclasses are inherited by a subclass
± Inheritance goes all the way up the hierarchy

Policy:
getClient
setClient
…

HomePolicy:
getClient
setClient
…
getHouse
setHouse

11

Agenda

± What is inheritance?

± Implementation Inheritance

±Method lookup in Java

±Use of this and super

±Constructors and inheritance

±Abstract classes and methods

12

HomePolicy

getHouse
setHouse

house

Method Lookup

HomePolicy homePolicy = new HomePolicy();

homePolicy.getPremium();

HomePolicy class – method
getPremium() is not found.

Policy

getPremium
setPremium

premium
Policy class – method
getPremium() is
found.

1

2

13

this vs. super
± They are both names of the receiver object:

± this: used for pointing to the current class instance.
±super: lookup begins in the superclass of the class where

super was defined.
class HomePolicy extends Policy
{

private int instalments;
private String house;

public void setInstalments (int instalments){
this.instalments = instalments;

}

public void print(){
super.print();
System.out.println("for house " + getHouse().toString();

}

//…
} 14

getClass()

± getClass()
± Method in java.lang.Object.
± It returns the runtime class

of the receiver object e.g.
com.example.HomePolicy

± getClass().getName()
± Method in java.lang.Class.
± It returns the name of the

class or interface of the
receiver object e.g.
HomePolicy 15

class Policy
{
//…
public void print()
{
System.out.println("A " + getClass().getName() + ", $" + getPremium());

}
//..

}

class HomePolicy extends Policy
{
//…
public void print()
{
super.print();
System.out.println("for house " + getHouse().toString();

}
//…

}

Policy p = new Policy();
p.print();

HomePolicy h = new HomePolicy();
h.print();

Policy

HomePolicy

A Policy, $1,200.00

A HomePolicy, $1,200.00
for house 200 Great Street

16

16

Method Overriding

± If a class defines the same method
as its superclass, it is said that the
method is overridden

± Method signatures must match

Policy

HomePolicy

//Method in the Policy class
public void print()
{
System.out.println("A " + getClass().getName() + ", $" + getPremium());

}

//Overridden method in the HomePolicy class
public void print()
{
super.print();
System.out.println("for house " + getHouse().toString();
}

17

Agenda

± What is inheritance?

± Implementation Inheritance

±Method lookup in Java

±Use of this and super

±Constructors and inheritance

±Abstract classes and methods

18

Constructors and Inheritance
public Policy(double premium, Client aClient, String policyNumber)
{

this.premium = premium;
this.policyNumber = policyNumber;
this.client = aClient;

}

public HomePolicy(double premium,
Client aClient,
String policyNumber,
House aHouse)

{
super(premium, aClient, policyNumber);
this.house = aHouse;

}

Policy

HomePolicy

± First line must be
a call to the super
constructor

19

Constructors and Inheritance

±Constructors are not inherited by the subclasses.

±If the call is not coded explicitly then an implicit zero-
argument super() is called.

±If the superclass does not have a zero-argument
constructor, this causes an error.

±Adopting this approach eventually leads to the Object
class constructor that creates the object.

Overview: Road Map

± What is inheritance?

± Implementation Inheritance

±Method lookup in Java

±Use of this and super

±Constructors and inheritance

±Abstract classes and methods

21

Defining Abstract Classes

22

public abstract class Policy	{

//	can	contain	zero	or	more abstract	methods.
//	a class	that	has	an	abstract	method	must be	declared	abstract.
//	cannot	create	an	instance	of	this	abstract	class.

}

Defining Abstract Classes
public abstract class Policy	{

//	can	contain	zero	or	more abstract	methods.
//	a class	that	has	an	abstract	method	must be	declared	abstract.
//	cannot	create	an	instance	of	this	abstract	class.

}

Policy
(abstract)

HomePolicy AutoPolicy LifePolicy

Abstract	class	
functions	as	a	
“base”	for	
subclasses.	

Concrete	
Subclasses	

complete	the	
implementation.

23

Defining Abstract Methods

24

public abstract class Policy
{
//	abstract	classes	can	contain	concrete	methods	as	well.
//	abstract	classes	are	not	required	to	have	abstract	methods.

/*	each	subclass	must	have	a	concrete	implementation	of	the	abstract	
method,	or	make	themselves	abstract.	*/

public abstract void calculateFullPremium();
}

Defining Abstract Methods

Policy (abstract)
calculateFullPremium

HomePolicy AutoPolicy LifePolicy

Abstract	
method.

25

public abstract class Policy
{
//	abstract	classes	can	contain	concrete	methods	as	well.
//	abstract	classes	are	not	required	to	have	abstract	methods.

/*	each	subclass	must	have	a	concrete	implementation	of	the	abstract	
method,	or	make	themselves	abstract.	*/

public abstract void calculateFullPremium();
}

Defining Abstract Methods

All subclasses
must

implement all
abstract
methods

public class HomePolicy extends Policy
{
//…
public void calculateFullPremium()
{

//calculation may depend on a criteria about the house
}

}

public class AutoPolicy extends Policy
{
//…
public void calculateFullPremium()
{

//calculation may depend on a criteria about the auto
}

}

public class LifePolicy extends Policy
{
//…
public void calculateFullPremium()
{

//calculation may depend on a criteria about the client
}

} 26

Summary

± What is inheritance?

± Implementation Inheritance

±Method lookup in Java

±Use of this and super

±Constructors and inheritance

±Abstract classes and methods

27

Multiple Inheritance ?

û û ü

±Not	supported	in	Java.
WHY?

28

Thought Experiment: Multiple Inheritance

±Let’s pretend that Java allows multiple

inheritance

http://javacodeonline.blogspot.ie/2009/08/deadly-diamond-of-death.html
29

public abstract class AbstractSuperClass{
abstract void do();

}

30
http://javacodeonline.blogspot.ie/2009/08/deadly-diamond-of-death.html

Thought Experiment: Multiple Inheritance

public class ConcreteOne extends AbstractSuperClass{
void do(){

System.out.println("I am testing multiple Inheritance");
}

}

public abstract class AbstractSuperClass{
abstract void do();

}

31
http://javacodeonline.blogspot.ie/2009/08/deadly-diamond-of-death.html

Thought Experiment: Multiple Inheritance

public class ConcreteTwo extends AbstractSuperClass{
void do(){

System.out.println("I will cause the Deadly Diamond of Death");
}

}

public abstract class AbstractSuperClass{
abstract void do();

}

32

Each class provides their own implementation of void do()

public class ConcreteOne extends AbstractSuperClass{
void do(){

System.out.println("I am testing multiple Inheritance");
}

}

http://javacodeonline.blogspot.ie/2009/08/deadly-diamond-of-death.html

Thought Experiment: Multiple Inheritance

± So far, our class diagram looks like this:

± No problems, yet…

<<abstract>>
AbstractSuperClass

ConcreteOne ConcreteTwo

33
http://javacodeonline.blogspot.ie/2009/08/deadly-diamond-of-death.html

Thought Experiment: Multiple Inheritance

± Now, if multiple inheritance were allowed, a fourth class
comes into picture which extends the above two
concrete classes.

public class DiamondEffect extends ConcreteOne, ConcreteTwo{
//Some methods of this class

}

34
http://javacodeonline.blogspot.ie/2009/08/deadly-diamond-of-death.html

Thought Experiment: Multiple Inheritance

± Diamond shape class diagram

<<abstract>>
AbstractSuperClass

ConcreteOne ConcreteTwo

DiamondEffect

35
http://javacodeonline.blogspot.ie/2009/08/deadly-diamond-of-death.html

Thought Experiment: Multiple Inheritance

± The DiamondEffect class
inherits all the methods of
the parent classes.

± BUT we have a common
method, void do(), in the two
concrete classes, each with
a different implementation.

± So which void do()
implementation will be used
for the DiamondEffect class
as it inherits both these
classes?

<<abstract>>
AbstractSuperClass

ConcreteOne ConcreteTwo

DiamondEffect

36
http://javacodeonline.blogspot.ie/2009/08/deadly-diamond-of-death.html

Thought Experiment: Multiple Inheritance

Multiple
Inheritance

Deadly Diamond of Death

Actually this is a critical issue that the java
designers wanted to avoid, so, the result

was…

37
http://javacodeonline.blogspot.ie/2009/08/deadly-diamond-of-death.html

(although it is
supported in C++ via

Virtual Base class
feature)

