
Interface Inheritance
An introduction to the Java Programming
Language

Produced
by:

Eamonn de Leastar (edeleastar@wit.ie)
Dr. Siobhan Drohan (sdrohan@wit.ie)

Agenda

• What is inheritance?
• Implementation Inheritance

• Method lookup in Java
• Use of this and super
• Constructors and inheritance
• Abstract classes and methods

• Interface Inheritance
• Definition
• Implementation
• Type casting
• Naming Conventions

2

Implementation vs Inheritance

Implementation
Inheritance

Interface
Inheritance

±Promotes reuse.
±Commonalities are

stored in a parent class
(superclass).

±Commonalities are
shared between
children classes
(subclasses).

±Mechanism for
introducing Types into
java design.

±Classes can support
more than one
interface, i.e. be of
more than one type.

3

Implementation Inheritance
Policy

client
premium
policyNumber
getClient
setClient
…

HomePolicy
house

getHouse
setHouse

AutoPolicy
auto

getAuto
setAuto

LifePolicy

specialization

4

Overview: Road Map

±Interface Inheritance
±Definition
±Implementation
±Type casting
±Naming Conventions

5

What is an interface?

6

What is an interface?

7

Defining Interfaces – abstract methods

public interface IAddressBook
{
void clear();

IContact getContact(String lastName);

void addContact(IContact contact);

int numberOfContacts();

void removeContact(String lastName);

String listContacts();
}

Methods are
implicitly public

and abstract

IAddressBook.java

8

Defining Interfaces – abstract methods

public interface IAddressBook
{
void clear();

IContact getContact(String lastName);

void addContact(IContact contact);

int numberOfContacts();

void removeContact(String lastName);

String listContacts();
}

Methods are
implicitly public

and abstract

IAddressBook.java

9

NOTE:	We	will	look	at	Java	8	and	Java	9	Interface	
evolution	in	future	lectures.

Overview: Road Map

±Interface Inheritance
±Definition
±Implementation
±Type casting
±Naming Conventions

10

25

Implementing
Interfaces

11

public class AddressBook implements IAddressBook
{
private Contact[] contacts;
private int nmrContacts;

public AddressBook()
{
contacts = new Contact[IAddressBook.getCapacity()];
nmrContacts = 0;

}

private int locateIndex(String lastName)
{
//…

}
public void clear(){
//…

}
…
}

public interface IAddressBook
{
void clear();

IContact getContact(String lastName);

void addContact(IContact contact);

int numberOfContacts();

void removeContact(String lastName);

String listContacts();
}

Implementing
Interfaces

public class AddressBook implements IAddressBook
{
private Contact[] contacts;
private int nmrContacts;

public AddressBook()
{
contacts = new Contact[IAddressBook.getCapacity()];
nmrContacts = 0;

}

private int locateIndex(String lastName)
{
//…

}
public void clear(){
//…

}
…
}

±Implementing	classes	are	
subtypes of	the	interface	
type.

± They	must define	all	abstract	
methods	for	the	Interface(s)	
they	implement;	otherwise	
the	class	must	be	declared	
abstract.

Implementing an Interface
±You can think of the class as signing a contract, agreeing to
perform the specific behaviours of the interface.

A class can implement more than one interface at a time i.e.
have more than one type.

A class can extend only one class, but implement many
interfaces.

An interface can extend any number of interfaces (called
subtyping). Multiple inheritance is allowed with interfaces.

An interface cannot implement another interface.

13

Extending Interfaces

<<interface>
Car

<<interface>
Color

<<interface>
ColoredCar

public interface ColoredCar extends Car, Color
{

public String goFaster();
}

public interface Car
{

public double getSpeed();
}

public interface Color
{

public String getBaseColor();
}

14

Interfaces in Collections Framework

15

Interfaces in Collections Framework

If you define a
reference/object variable
whose type is an
interface, any object you
assign to it must be an
instance of a class that
implements the interface.

16

Interfaces in Collections Framework

If you define a
reference/object variable
whose type is an
interface, any object you
assign to it must be an
instance of a class that
implements the interface.

Applying this rule to a List:

List<Product> products = new ArrayList<Product>();
17

Overview: Road Map

±Interface Inheritance
±Definition
±Implementation
±Type casting
±Naming Conventions

18

Reference vs Interface type

± Reference type
± Any instance of that

class or any of the
subclasses can be
assigned to the
variable.

Policy policy;
policy = new Policy();

Policy policy;
policy = new HomePolicy();

19

Reference vs Interface type

± Reference type
± Any instance of that

class or any of the
subclasses can be
assigned to the
variable.

± Interface type
± Any instance of any

class that implements
that interface can be
assigned to the
variable.

IAddressBook book;

book = new AddressBook();
book.clear();
book.addContact(contact);
//… etc…

book declared as an IAddressBook interface type

Policy policy;
policy = new Policy();

Policy policy;
policy = new HomePolicy();

20

Variables and Messages

± If a variable is
defined as a
certain type,
only messages
defined for that
type can be sent
to the variable.

IAddressBook book;

book = new AddressBook();

book.clear();
book.addContact(contact);

int i = book.locateIndex(“mike”);

// Error!
//
// static type is IAddressBook à
// compile-time check finds that
// locateIndex() is defined in
// AddressBook – but not in
// IAddressBook.

21

Type Casting
± Type casting can be subverted (undermined) by type

checking.
± To be used rarely and with care.
± Type cast can fail, and run time error will be generated if

the book object really is not an AddressBook
(e.g. it could be an AddressBookMap which also implements

IAddressBook)
IAddressBook book;

book = new AddressBook();

book.clear();
book.addContact(contact);

int i = ((AddressBook)book).locateIndex(“mike”);

Type cast from IAddressBook to AddressBook
22

Common Naming Conventions

± There are a few conventions when naming interfaces:

±Suffix able is often used for interfaces
±Cloneable, Serializable, and Transferable

±Nouns are often used for implementing classes names, and I +
noun for interfaces
±Interfaces: IColor, ICar, and IColoredCar
±Classes: Color, Car, and ColoredCar

±Nouns are often used for interfaces names, and noun+Impl for
implementing classes
±Interfaces: Color, Car, and ColoredCar
±Classes: ColorImpl, CarImpl, and ColoredCarImpl

23

Agenda

± What is inheritance?
± Implementation Inheritance

±Method lookup in Java
±Use of this and super
±Constructors and inheritance
±Abstract classes and methods

± Interface Inheritance
±Definition
±Implementation
±Type casting
±Naming Conventions

24

