Interface Inheritance

An introduction to the Java Programming
Language

Produced Eamonn de Leastar (edeleastar@wit.ie)
OY: Dr. Siobhan Drohan (sdrohan@wit.ie)

@ Waterford Institute of Technology
] INSTITIUID TEICNEOLAIOCHTA PHORT LAIRGE
\a.— P

Agenda

 What is inheritance?

* Implementation Inheritance
 Method lookup in Java
« Use of this and super
» (Constructors and inheritance
* Abstract classes and methods

 Interface Inheritance
* Definition
* Implementation
« Type casting
« Naming Conventions

Implementation vs Inheritance

Implementation Interface
Inheritance Inheritance
“ Promotes reuse. - Mechanism for
& Commonalities are introducing Types into
java design.

stored in a parent class
(superclass). < Classes can support
more than one
iInterface, i.e. be of
more than one type.

< Commonalities are
shared between
children classes
(subclasses).

generalization

Implementation Inheritance

olicy

client
oremium
oolicyNumber

getClient
setClient

AN

Homerolicy

AUtOPolicy

LifeFPolicy

nouse

auto

uonezijenads

getHouse
setHouse

getAuto
setAuto

Overview: Road Map

nterface Inheritance

< Definition

< Implementation
< Type casting

©Naming Conventions

What is an interface?

[Attributes J Behavioursx

[BehaviourSJ

What is an interface?

A type in Java.
Similar(ish) to a

Can contain
class

— abstract method
signatures

<-constants (final
static fields)

\.

(default & static
methods and their
bodies (java 8+)

Private methods
and their bodies
(java 9+)

Cannot
contain

Any fields other
than constants

Any constructors

Any concrete
methods except
default and
static(Java 8) and
private (Java 9)

Defining Interfaces — abstract methods

|IAddressBook.java

public interface |AddressBook
{

void clear();

Methods are
implicitly public |Contact getContact(String lastName);

and abstract

void addContact(IContact contact);
int numberOfContacts();
void removeContact(String lastName);

String listContacts();

Defining Interfaces — abstract methods

|IAddressBook.java

public interface |AddressBook
{

void clear();

Methods are
implicitly public |Contact getContact(String lastName);

and abstract

void addContact(IContact contact);

int numberOfContacts();
void removeContact(String lastName);

String listContacts();

}

NOTE: We will look at Java 8 and Java 9 Interface
evolution in future lectures.

Overview: Road Map

< Interface Inheritance
< Definition

< Implementation

< Type casting

©Naming Conventions

10

public class AddressBook implements |AddressBook

{

private Contact[] contacts;
private int nmrContacts;

public AddressBook()
{

contacts = new Contact[|IAddressBook.getCapacity()];

nmrContacts = 0;

}

private int locatelndex(String lastName)

{
/...

}

public void clear(){
...

}

Implementing
Interfaces

public interface |AddressBook
{void clear();
|Contact getContact(String lastName);
void addContact(IContact contact);
int numberOfContacts();

void removeContact(String lastName);

String listContacts();

public class AddressBook implements |AddressBook

{

private Contact[] contacts;
private int nmrContacts;

public AddressBook()
{

contacts = new Contact[|IAddressBook.getCapacity()];

nmrContacts = 0;

}

private int locatelndex(String lastName)

{
/...

}

public void clear(){
...

}

Implementing
Interfaces

4 Implementing classes are
subtypes of the interface

type.

< They must define all abstract
methods for the Interface(s)
they implement; otherwise
the class must be declared
abstract.

Implementing an Interface

4 You can think of the class as signing a contract, agreeing to
perform the specific behaviours of the interface.

have more than one type.

> A class can implement more than one interface at a time i.e.

A class can extend only one class, but implement many
interfaces.

An interface can extend any number of interfaces (called
subtyping). Multiple inheritance is allowed with interfaces.

> An interface cannot implement another interface.

13

Extending Interfaces

public interface Car

{
public double getSpeed() ;

}

public interface Color

{
public String getBaseColor();

}

<<interface>
Car

<<interface>
Color

~

~

<<interface>
ColoredCar

{

}

public interface ColoredCar extends Car, Color

public String goFaster() ;

14

Interfaces in Collections Framework

«interface»
List

implements : : implements

Arra_yLlst LinkedList

15

Interfaces in Collections Framework

If you define a
reference/object variable
whose type is an
interface, any object you
assign to it must be an
instance of a class that

Implements the interface.

«interface»
List
implements : : implements
ArrayList LinkedList

16

Interfaces in Collections Framework

«interface»

If you define a List

reference/object variable

whose type is an
interface, any object you implements implements
assign to it must be an

) ArrayList LinkedList
instance of a class that
Implements the interface.

Applying this rule to a List:

List<Product> products = new ArrayList<Product>();

17

Overview: Road Map

< Interface Inheritance
< Definition

< Implementation

< Type casting

©Naming Conventions

18

Reference vs Interface type

4 Reference type

< Any instance of that
class or any of the
subclasses can be
assigned to the
variable.

Policy policy;
policy = new Policy();

premium
policyNumber

Policy policy;
policy = new HomePolicy ()

]
LifePolicy

eeeeeeee

ssssss

19

Reference vs Interface type

4 Reference type
< Any instance of

class or any of the

subclasses can
assigned to the
variable.

< |nterface type

N Any InStan_Ce of any book = new AddressBook() ;
class that implements || yook.clear () ;
that interface can be book .addContact (contact) ;
assigned to the //.. etc..

variable.

Policy policy; Pt

nnnnn

that

premium

policy = new Policy(); "

]
LifePolicy

be Policy policy;

policy = new HomePolicy () ; |

IAddressBook book;

book declared as an IAddressBook interface type

20

Variables and Messages

< |f a variable is
defined as a
certain type,
only messages
defined for that
type can be sent
to the variable.

IAddressBook book;
book = new AddressBook() ;

book.clear () ;
book.addContact (contact) ;

int i = book.locateIndex(“mike”) ;

// Error!

//

// static type is IAddressBook =>
// compile-time check finds that
// locateIndex() is defined in
// AddressBook - but not in

// IAddressBook.

21

Type Casting

4 Type casting can be subverted (undermined) by type
checking.
< To be used rarely and with care.

¢ Type cast can fail, and run time error will be generated if
the book object really is not an AddressBook
(e.g. it could be an AddressBookMap which also implements
|IAddressBook)

IAddressBook book;

book = new AddressBook() ;

book.clear () ;
book.addContact (contact) ;

int i = ((AddressBook)book) .locateIndex(“mike”) ;

Type cast from IAddressBook to AddressBook

27

Common Naming Conventions

¢ There are a few conventions when naming interfaces:

< Suffix able is often used for interfaces
< Cloneable, Serializable, and Transferable

+Nouns are often used for implementing classes names, and | +
noun for interfaces

< |Interfaces: |IColor, ICar, and IColoredCar
4 Classes: Color, Car, and ColoredCar

< Nouns are often used for interfaces names, and noun+Impl for
implementing classes

< |Interfaces: Color, Car, and ColoredCar
$-Classes: Colorimpl, Carlmpl, and ColoredCarlmpl

23

Agenda

< What is inheritance?
< Implementation Inheritance
< Method lookup in Java
< Use of this and super
< Constructors and inheritance
< Abstract classes and methods
4 Interface Inheritance
< Definition
< Implementation
< Type casting
©Naming Conventions

24

