Agile Software Development

Dr. Siobhan Drohan (sdrohan@wit.ie)
Eamonn de Leastar (edeleastar@wit.ie)

D Waterford Institute of Technology

Ry] MSTITIOID TEICNECLATOCHTA PHORT LAURCE
e

mailto:sdrohan@wit.ie
mailto:edeleastar@wit.ie

Ca
<
o A
&J’ %‘;‘f ,_,.g—-—__
TDD circle ﬁ?:& g
of life e, ‘

"_“_‘

v ALL CODE IS GUILTY

UNTIL PROVEN INNOCENT

Mﬂp—[—w

Waterfall - development approach

[ty |79

T
[o ™

Implement

Maintain

Waterfall - development approach

Tan Feb Mar Apr May Jun Jul Aug Sep Oct

Requirements
Desi1gn

</

Testand Fix
Testand Fix lestand Fix
Test and Fix_ Test and Fix
Pk o pie [estand Fix
ol < L aa

Waterfall - Working Features

Working Features

RRAND CAMP

THE NEW PRODULCT WATERFALL

by TOM F~5L\‘ovit\€.

= G (% | TWSH WED
' DESIGNED Fog
THIS ScEnpblo || PATCH (T AS
VPFRONT REST WE (AN
?Hoakéwooog; | NO TIME To
ENTIRE (OVRSE | CHANGE (pURSE
It WE DON'T |JHATEVER Now/
KNOW WHAT'S || HAPPENS, JUsST
AHERD 7 KEEP PADDUN!
| PLAN Bu\L D TEST LAUNCH
® 010 ToMFSHRUENE. (oA

https://www.linkedin.com/pulse/enterprise-performance-management-solutions-agile-projects-mkpadi/

https://www.linkedin.com/pulse/enterprise-performance-management-solutions-agile-projects-mkpadi/

Waterfall

Relative Cost of Fixing Defects
100

100

a0 ;

60

40 "

15
20 , 1 6.5 1
0 1 1 T
Design Implementation Testing Maintenance

Figure 3: IBM System Science Institute Relative Cost of Fixing Defects

Defects found in testing were 15 times more costly than if they were found during the design phase and

2 times more than if found during implementation.

https://www.researchgate.net/publication/255965523 Inteqgrating Software Assurance into the Software Development Life Cycle SDLC

https://www.researchgate.net/publication/255965523_Integrating_Software_Assurance_into_the_Software_Development_Life_Cycle_SDLC

Waterfall Vs Agile

Unknown
Business
Requirements
Agile
Waterfall
Known

Unknown
Technology Solution

https://www.linkedin.com/pulse/enterprise-performance-management-solutions-agile-projects-mkpadi/

https://www.linkedin.com/pulse/enterprise-performance-management-solutions-agile-projects-mkpadi/

Waterfall Vs Agile

THE WATERFALL PROCESS

‘This project has got so big,
I'm not sure I'll be able to deliver it!’

1

THE AGILE PROCESS

It's so much better delivering this
project in bite-sized sections’

https://www.linkedin.com/pulse/pragmatic-pivoting-software-development-life-cycle-beyond-mkpadi/

https://www.linkedin.com/pulse/pragmatic-pivoting-software-development-life-cycle-beyond-mkpadi/

Waterfall Vs Agile

Waterfall Cycles of Work

~ PlanningPhase Design Phase

Construction

QA Phase

Agile C|¥cles of Work

eature A

https://www.linkedin.com/pulse/enterprise-performance-management-solutions-agile-projects-mkpadi/

https://www.linkedin.com/pulse/enterprise-performance-management-solutions-agile-projects-mkpadi/

Agile — Iterative Approach

"N N DD

Vision Continue
Iteration 1 lteration 2 Iteration 3 Iteration 4
Implementation & Developer Testing
DES‘S“ & ‘ QA / Acceptance
Analysis Testing
Iteration Detail
Detailed (Deployment)

Requirements

Evaluation /
Prioritization

https://cloudhcm.wordpress.com/2014/09/13/project-management-tool-for-saas-implementation-projects/

https://cloudhcm.wordpress.com/2014/09/13/project-management-tool-for-saas-implementation-projects/

Iterative Approach - Working Features

TAVAVAVAVAVAVAYAVA AVAVAVAYA

TV VL W VL K I I K B,
A) N A N i _J0 T DA A IABA T
Y AVAVAVAVAVAVAVAVAVAVAVAVA

Fequirements

wrking Features

W

Agile — Both Iterative and Incremental

Not like this....

_ca

Likefis!
B © ©

l 2 3

Henrik Kniberg

https://m.dotdev.co/the-agile-bicycle-829a83b18e7

https://m.dotdev.co/the-agile-bicycle-829a83b18e7

Waterfall vs Agile — Cost of Change

Cost of change curve

Traditional

Change resisted

cost

Agile

Change welcome!

time

https://www.linkedin.com/pulse/enterprise-performance-management-solutions-agile-projects-mkpadi/

https://www.linkedin.com/pulse/enterprise-performance-management-solutions-agile-projects-mkpadi/

Developer landscape has changed just a little (!) ...

New tools have dramatically eased mundane developer tasks:
— Automated test tools (e.g. JUnit)
— System build tools (e.g. Maven, Gradle, SBT)
— Version control (e.g. Git repositories, Github hosting service)
— Continuous Iintegration
Used properly, OO languages can make software much easier to change.

The cost curve is significantly flattened, i.e. costs don’t increase dramatically
with time.

Up front modeling becomes a liability — some speculative work will certainly be
wrong, especially in a business environment.

“Good programmers write code,
great programmers write tests”

17

“Never,
In the field of programming,
have so many
owed sO much
to so few”

- Martin Fowler on the developers behind JUnit

18

RED

1. Write a test
that fails

3. Eliminate
redundancy

REFAGTOR GREEN

2. Make the
code work

The mantra of Test-Driven Development (TDD) is “red, green, refactor”

Write a
test that
fails

Run the
test and
watch it
fail

Implement
enough to

Run the
test and

Run the
test and
watch it

Refactor
for clarity

& 2012-2015 Gargoyle Software Inc.

TDD — Definition

Test-driven development (TDD) refers to a

style of programming in which three activities
are tightly interwoven:

e coding,
e testing (in the form of writing unit tests) and

* design (in the form of refactoring).

https://www.agilealliance.org/glossary/tdd/

https://www.agilealliance.org/glossary/unit-test/
https://www.agilealliance.org/glossary/refactoring/
https://www.agilealliance.org/glossary/tdd/

What is Unit Testing?

* A unit test is a piece of code written by a developer that exercises a very
small, specific area of functionality of the code being tested.

— Usually a unit test exercises some particular method in a particular context

« Unit tests are performed to prove that a piece of code does what the developer
thinks it should do.

* The question remains open as to whether that's the right thing to do according
to the customer or end-user:

— that Is acceptance testing (Acceptance Test Driven Development,
Behaviour Driven Development)

22

https://www.agilealliance.org/glossary/atdd/q=~(filters~(postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'acceptance*20test~'atdd))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://www.agilealliance.org/glossary/bdd/

What is Regression Testing?

New code and changes to old code can affect the rest of the code base.

— ‘Affect’ sometimes means ‘break’.

We need to rerun tests on the old code, to verify it still works — this is
regression testing.

Regression testing Is required for a stable, maintainable code base.

Unit tests retain their value over time and allows others to prove the software
still works (as tested).

What does Unit Testing Accomplish ?

Does the code do what was expected?

— I.e. Is the code fulfilling the intent of the developer?

Does the code do what was expected all the time?

— exceptions get thrown, disks get full, network lines drop, buffers overflow - Is
the code still performing as expected?

Can the code be depended upon?

— Need to know for certain both its strengths and its limitations.

Does the test document the developers intent?

— An important side-effect of unit testing is that it helps communicate the
code's intended use.

24

TDD — General

* An iterative technique to develop software.

Tests are written before the code itself.

As much (or more) about design as testing.
— Encourages design from user’s point of view.

— Encourages testing classes/units in isolation — Unit testing.

A test framework is used so that automated testing can be done after every
small change to the code.

* This may be as often as every 5 or 10 minutes.

Axiom:
— ‘Code that isn’t tested doesn’t work’

— ‘Code that isn’t regression tested suffers from code rot (breaks eventually)

TDD — General (Contd.)

« As much (or more) about documentation as testing.
— The tests are the documentation of what the code does.
* Must be learned and practiced.
e Conseguences:
— Fewer bugs;
— More maintainable code - loosely-coupled, highly-cohesive systems.

— During development, the program always works—it may not do everything
required, but what it does, it does right.

— Breaks the cycle of more pressure == fewer tests (the fewer tests you write, the
less productive you are and the less stable your code becomes).

How is Unit Testing carried out?

Step 1: Decide how to test the method in question before writing the code itself

Step 2: Write the test code itself, either before or concurrently with the
Implementation code.

Step 3: Run the test itself, and probably all the other tests in that part of the
system.

Key Feature of executing unit tests:

— You need to be able to determine at a glance whether all tests are
succeeding/failing. The JUnit Framework will do this for us!

27

Why bother with TDD?

TDD — Why bother with TDD/Unit Testing

* Significant reductions in defect rates, at the cost of a
moderate increase in initial development effort:

generally these overheads are more than offset
by a reduction in effort in projects’ final phases.

 Anecdotal evidence suggests that TDD leads to

improved design qualities in the code, and more
generally a higher degree of technical quality.

https://www.agilealliance.org/glossary/tdd/

https://www.agilealliance.org/glossary/tdd/

Excuses for not engaging in TDD

Excuse #1

PAY-AS-YOU-GO SINGLE TEST PHASE
11 14 \
2 = \
& =
£ \
= = '|I
e s |
£ 2 |
Time — R Time — I|I

‘It takes too much time to write the tests"

— The trade-off is not “test now” versus “test later”

— It's linear work now versus exponential work and complexity trying to fix and
rework at the end.

31

Excuse #2

NO, | DIDN’T
GET THE TESTING DONE.
THE REQUIREMENTS WERE
AMBIGUOUS,

https://www.ca.com/us/products/excuse-free-testing.html

https://www.ca.com/us/products/excuse-free-testing.html

Excuse #2 (contd.)

Write a failing
feature test

BEDD

Write a
failing d Make, the
test test \pass

7DD

Refactor n cycles

http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE 517 Fall 2014/chlb 28 cq

http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_517_Fall_2014/ch1b_28_cg

Excuse #3

‘It takes too long to run the tests”

34

Excuse #3

“It takes too long to run the tests”

—Separate out the longer-running tests from the short ones.

—Only run the long tests once a day, or once every few days as
appropriate, and run the shorter tests constantly.

—Your code isn’t finished until you have verified it works!

35

Excuse #4

“It's not developers job to test his/her code”

36

Excuse #4

“It's not developers job to test his/her code”

—Integral part of developer job Is to create working code.

Developer L & QA

37

Excuse #5

“But it compiles!”

38

Excuse #5

“But it compiles!”

—A compiler's blessing is a pretty

shallow compliment.

NOVICE PROGRAMMER

— —

I CAN'T
BELIEVE IT
WORKED
FIRST TIME!

EXPERIENCED PROGRAMMER

I CAN'T
BELIEVE IT
WORKED
FIRST TIME...

39

Excuse #6

“We refactor our code so frequently, that the time we invest In
tests just isn't worth It - they are going to change and be irrelevant
anyhow"

40

http://en.wikipedia.org/wiki/Code_refactoring

Excuse #6

“We refactor our code so frequently, that the time we invest In

tests just isn't worth It - they are going to change and be irrelevant
anyhow"

» How can you be certain you didn’t break anything when
refactoring your code?

» Regression testing is one of the number one reasons for doing
TDD...good regression tests will, almost immediately, show up
un-intended side effects of your code change.

* A good rule is...NEVER refactor without tests!

41
http://codesheriff.blogspot.ie/2011/11/excuse-5-frequent-refactoring-excuse.html

http://en.wikipedia.org/wiki/Code_refactoring
http://codesheriff.blogspot.ie/2011/11/excuse-5-frequent-refactoring-excuse.html

Excuse #/

“We are such talented programmers, we don’t need tests”

http://codesheriff.blogspot.ie/2011/11/excuse-5-frequent-refactoring-excuse.html

http://codesheriff.blogspot.ie/2011/11/excuse-5-frequent-refactoring-excuse.html

Excuse #/

“We are such talented programmers, we don’t need tests”

» Everyone has bugs in their code...we are human after
all!

* Ok, even if you are a "bug-free coder”, what (e
about Regression testing in the future by you é@&e oo
and other programmers?

http://codesheriff.blogspot.ie/2011/11/excuse-5-frequent-refactoring-excuse.html

http://codesheriff.blogspot.ie/2011/11/excuse-5-frequent-refactoring-excuse.html

Can we engage in TDD too much?

| understand that you're committed

to Test Driven Development, but
don't you think that testing the tests
that test the tests that test your public
methods and properties is a bit much?

N

RO3LBOR 2016

I.
[

R

b

Waterford Institute of Technology

HETITIOID TEICNEOLAIOCHTA PHORT LURCE

H©

Except where otherwise noted, this content is
licensed under a Creative Commons Attribution-

NonCommercial 3.0 License.

For more information, please see
http://creativecommons.org/licenses/by-nc/3.0/

0

elearning
support unit

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

