
Produced
by

Agile Software Development

Dr. Siobhan Drohan (sdrohan@wit.ie)

Eamonn de Leastar (edeleastar@wit.ie)

mailto:sdrohan@wit.ie
mailto:edeleastar@wit.ie

Agile and Test Driven Development (TDD)

Waterfall - development approach

Waterfall - development approach

Waterfall - Working Features

https://www.linkedin.com/pulse/enterprise-performance-management-solutions-agile-projects-mkpadi/

https://www.linkedin.com/pulse/enterprise-performance-management-solutions-agile-projects-mkpadi/

https://www.researchgate.net/publication/255965523_Integrating_Software_Assurance_into_the_Software_Development_Life_Cycle_SDLC

Waterfall

https://www.researchgate.net/publication/255965523_Integrating_Software_Assurance_into_the_Software_Development_Life_Cycle_SDLC

Waterfall Vs Agile

https://www.linkedin.com/pulse/enterprise-performance-management-solutions-agile-projects-mkpadi/

https://www.linkedin.com/pulse/enterprise-performance-management-solutions-agile-projects-mkpadi/

https://www.linkedin.com/pulse/pragmatic-pivoting-software-development-life-cycle-beyond-mkpadi/

Waterfall Vs Agile

https://www.linkedin.com/pulse/pragmatic-pivoting-software-development-life-cycle-beyond-mkpadi/

Waterfall Vs Agile

https://www.linkedin.com/pulse/enterprise-performance-management-solutions-agile-projects-mkpadi/

https://www.linkedin.com/pulse/enterprise-performance-management-solutions-agile-projects-mkpadi/

Agile – Iterative Approach

https://cloudhcm.wordpress.com/2014/09/13/project-management-tool-for-saas-implementation-projects/

https://cloudhcm.wordpress.com/2014/09/13/project-management-tool-for-saas-implementation-projects/

Iterative Approach - Working Features

Agile – Both Iterative and Incremental

https://m.dotdev.co/the-agile-bicycle-829a83b18e7

https://m.dotdev.co/the-agile-bicycle-829a83b18e7

https://www.linkedin.com/pulse/enterprise-performance-management-solutions-agile-projects-mkpadi/

Waterfall vs Agile – Cost of Change

https://www.linkedin.com/pulse/enterprise-performance-management-solutions-agile-projects-mkpadi/

Developer landscape has changed just a little (!) …

• New tools have dramatically eased mundane developer tasks:

– Automated test tools (e.g. JUnit)

– System build tools (e.g. Maven, Gradle, SBT)

– Version control (e.g. Git repositories, Github hosting service)

– Continuous integration

• Used properly, OO languages can make software much easier to change.

• The cost curve is significantly flattened, i.e. costs don’t increase dramatically

with time.

• Up front modeling becomes a liability – some speculative work will certainly be

wrong, especially in a business environment.

“Good programmers write code,

great programmers write tests”

17

“Never,

in the field of programming,

have so many

owed so much

to so few”

- Martin Fowler on the developers behind JUnit

18

TDD – Definition

Test-driven development (TDD) refers to a
style of programming in which three activities
are tightly interwoven:

• coding,
• testing (in the form of writing unit tests) and
• design (in the form of refactoring).

https://www.agilealliance.org/glossary/tdd/

https://www.agilealliance.org/glossary/unit-test/
https://www.agilealliance.org/glossary/refactoring/
https://www.agilealliance.org/glossary/tdd/

What is Unit Testing?

• A unit test is a piece of code written by a developer that exercises a very

small, specific area of functionality of the code being tested.

– Usually a unit test exercises some particular method in a particular context

• Unit tests are performed to prove that a piece of code does what the developer

thinks it should do.

• The question remains open as to whether that's the right thing to do according

to the customer or end-user:

– that is acceptance testing (Acceptance Test Driven Development,

Behaviour Driven Development)

22

https://www.agilealliance.org/glossary/atdd/q=~(filters~(postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'acceptance*20test~'atdd))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://www.agilealliance.org/glossary/bdd/

What is Regression Testing?

• New code and changes to old code can affect the rest of the code base.

– ‘Affect’ sometimes means ‘break’.

• We need to rerun tests on the old code, to verify it still works – this is

regression testing.

• Regression testing is required for a stable, maintainable code base.

• Unit tests retain their value over time and allows others to prove the software

still works (as tested).

What does Unit Testing Accomplish ?

• Does the code do what was expected?

– i.e. is the code fulfilling the intent of the developer?

• Does the code do what was expected all the time?

– exceptions get thrown, disks get full, network lines drop, buffers overflow - is

the code still performing as expected?

• Can the code be depended upon?

– Need to know for certain both its strengths and its limitations.

• Does the test document the developers intent?

– An important side-effect of unit testing is that it helps communicate the

code's intended use.

24

TDD – General

• An iterative technique to develop software.

• Tests are written before the code itself.

• As much (or more) about design as testing.

– Encourages design from user’s point of view.

– Encourages testing classes/units in isolation – Unit testing.

• A test framework is used so that automated testing can be done after every

small change to the code.

• This may be as often as every 5 or 10 minutes.

• Axiom:

– ‘Code that isn’t tested doesn’t work’

– ‘Code that isn’t regression tested suffers from code rot (breaks eventually)’

TDD – General (Contd.)

• As much (or more) about documentation as testing.

– The tests are the documentation of what the code does.

• Must be learned and practiced.

• Consequences:

– Fewer bugs;

– More maintainable code - loosely-coupled, highly-cohesive systems.

– During development, the program always works—it may not do everything

required, but what it does, it does right.

– Breaks the cycle of more pressure == fewer tests (the fewer tests you write, the

less productive you are and the less stable your code becomes).

How is Unit Testing carried out?

• Step 1: Decide how to test the method in question before writing the code itself

• Step 2: Write the test code itself, either before or concurrently with the

implementation code.

• Step 3: Run the test itself, and probably all the other tests in that part of the

system.

• Key Feature of executing unit tests:

– You need to be able to determine at a glance whether all tests are

succeeding/failing. The JUnit Framework will do this for us!

27

Why bother with TDD?

TDD – Why bother with TDD/Unit Testing

• Significant reductions in defect rates, at the cost of a
moderate increase in initial development effort:

generally these overheads are more than offset
by a reduction in effort in projects' final phases.

• Anecdotal evidence suggests that TDD leads to
improved design qualities in the code, and more
generally a higher degree of technical quality.

https://www.agilealliance.org/glossary/tdd/

https://www.agilealliance.org/glossary/tdd/

Excuses for not engaging in TDD

Excuse #1

“It takes too much time to write the tests"

– The trade-off is not “test now” versus “test later”

– It's linear work now versus exponential work and complexity trying to fix and

rework at the end.

31

Excuse #2

https://www.ca.com/us/products/excuse-free-testing.html

https://www.ca.com/us/products/excuse-free-testing.html

Excuse #2 (contd.)

http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_517_Fall_2014/ch1b_28_cg

http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_517_Fall_2014/ch1b_28_cg

Excuse #3

“It takes too long to run the tests”

34

Excuse #3

“It takes too long to run the tests”

–Separate out the longer-running tests from the short ones.

–Only run the long tests once a day, or once every few days as

appropriate, and run the shorter tests constantly.

–Your code isn’t finished until you have verified it works!

35

Excuse #4

“It's not developers job to test his/her code”

36

Excuse #4

“It's not developers job to test his/her code”

–Integral part of developer job is to create working code.

37

Excuse #5

“But it compiles!"

38

Excuse #5

“But it compiles!”

–A compiler's blessing is a pretty

shallow compliment.

39

Excuse #6

“We refactor our code so frequently, that the time we invest in

tests just isn't worth it - they are going to change and be irrelevant

anyhow"

40

http://en.wikipedia.org/wiki/Code_refactoring

Excuse #6

“We refactor our code so frequently, that the time we invest in

tests just isn't worth it - they are going to change and be irrelevant

anyhow“

• How can you be certain you didn’t break anything when

refactoring your code?

• Regression testing is one of the number one reasons for doing

TDD…good regression tests will, almost immediately, show up

un-intended side effects of your code change.

• A good rule is…NEVER refactor without tests!

41

http://codesheriff.blogspot.ie/2011/11/excuse-5-frequent-refactoring-excuse.html

http://en.wikipedia.org/wiki/Code_refactoring
http://codesheriff.blogspot.ie/2011/11/excuse-5-frequent-refactoring-excuse.html

Excuse #7

“We are such talented programmers, we don’t need tests"

42

http://codesheriff.blogspot.ie/2011/11/excuse-5-frequent-refactoring-excuse.html

http://codesheriff.blogspot.ie/2011/11/excuse-5-frequent-refactoring-excuse.html

Excuse #7

“We are such talented programmers, we don’t need tests“

• Everyone has bugs in their code…we are human after

all!

• Ok, even if you are a “bug-free coder”, what

about Regression testing in the future by you

and other programmers?

43

http://codesheriff.blogspot.ie/2011/11/excuse-5-frequent-refactoring-excuse.html

http://codesheriff.blogspot.ie/2011/11/excuse-5-frequent-refactoring-excuse.html

Can we engage in TDD too much?

Except where otherwise noted, this content is

licensed under a Creative Commons Attribution-

NonCommercial 3.0 License.

For more information, please see

http://creativecommons.org/licenses/by-nc/3.0/

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

