Agile Software Development

Eamonn de Leastar (edeleastar@wit.ie)

Department of Computing, Maths & Physics
Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

Waterford Institute of Technology o eLeaming_
support unit

q]\ g INSTITIOID TECNEOLAIOCHTA PHORT LARGE
I3 —

T —wE

mailto:edleastar@wit.ie

M .
 O— — — _—— e— — — — e— — o— — e— — - _—— — —:— _——

.................................... Test Double Patterns,, |
Dummy Fake Test Test Mock
Object Obiject Stub Spy Object
............. I.
I T o
Test-Specific . Construction
Subclass Test % Confiugrable
Subclassed Test Double k-~ 1 _festDouble
Double ~~4 4\ Hard-Coded
IO :”| Test Double
/ N
/ B .

How can we verify logic independently
Test Double when code it depends on is unusable?

How can we avoid Slow Tests?

We replace a component on which the SUT
depends with a “test-specific equivalent.”

| DOC
Fixture
Setup Test
Double
Exercise
g

Verify O

O
Teardown

SUT - System Under Test
DOC - Depended-On Component

3

Test Double Patterns

et s =it S o -
| {|Dummy| | Fake Test Test Mock |
| | Object | | Object | | Stub Spy | | Object |i !
. f? | LT e i ey S —— i m=m— :
What is a Test Double’: | I
' Test-Specific i Construction '
I Subclass Test 3 Confiugrable | l
I Subclassed Test Double k-~ 1 TestDouble | : |
| Double ~~i{ Hard-Coded | | |
| - :”| TestDouble | i |

- Hard to test the SUT because it depends on other components that cannot
be used in the test environment

» Eg - those components aren’t available, will not return the results needed
for the test, or executing them would have undesirable side effects

* When writing a test in which we cannot use the real Depended-on
Component (DOC), we can replace it with a Test Double.

- The Test Double doesn’t have to behave exactly like DOC, it merely has to
provide the same API so that the SUT thinks it is the real one

» Called after “Stunt Double” in movie making - the stunt person takes the
place of the real actor

When to use It

- If we have an untested requirement because neither the SUT nor its DOCs
provide an observation point for the SUT’s indirect output that we need to
verify

- If we have untested code and a DOC does not provide the control point to
allow us to exercise the SUT with the necessary indirect inputs

- If we have slow tests and we want to be able to run our tests more quickly
and hence more often

Variations of Test Double

Test
Double

AN
_____ .
E Dummy ' | Test Test Mock Fake
- Object | | Stub Spy Object Object

» Jest Stub: Replace a real « Mock Object: an observation point

component on which the SUT to verify the indirect outputs of the
depends so that the test has SUT as it is exercised.

a control point for the indirect
inputs of the SUT.

Test Stub

How can we verify logic
iIndependently when it
depends on indirect
inputs from other
software components?

We replace a real
object with a test-
specific object that
feeds the desired

indirect inputs into the
system under test.

Setup

Exercise

Installation

DOC
Test

Fixture

Creation

SUT

Verify ()

Teardown

L=

Stub

Return
Values

Test Stub Motivation

public void testDisplayCurrentTime_AtMidnight(){
// fixture setup
TimeDisplay sut = new TimeDisplay();
// exercise SUT
String result = sut.getCurrentTimeAsHtmlFragment();
// verify direct output
String expectedTimeString = "Midnight";
assertbEquals(expectedTimeString, result);

* Verifies the basic functionality of a component that formats an HTML string
containing the current time.

« Depends on the real system clock so it rarely ever passes!

Test Stub Example

public void testDisplayCurrentTime_AtMidnight() {
// Fixture setup
// Test Double configuration
TimeProvider tpStub = new TimeProviderTestStub();
tpStub.setHours(0);
tpStub.setMinutes(0);
// Instantiate SUT
TimeDisplay sut = new TimeDisplay();
// Test Double installation
sut.setTimeProvider(tpStub);
// Exercise SUT
String result = sut.getCurrentTimeAsHtmlFragment();
// Verify outcome
String expectedTimeString = "Midnight";
assertEquals("Midnight", expectedTimeString, result);

i

* Note that TimeDisplay (SUT) depends on TimeProvider (DOC).

- The DOC is replaced with a stub - TimeProviderTestStub which is
hand coded to return 00:00 time.

Test Stub Using JMock Library

public void testDisplayCurrentTime_AtMidnight_JIM() {
// Fixture setup
TimeDisplay sut = new TimeDisplay();
// Test Double configuration
Mock tpStub = mock(TimeProvider.class);
Calendar midnight = makeTime(0,0);
tpStub.stubs().method(“getTime™).withNoArguments() .will(returnValue(midnight));
// Test Double installation
sut.setTimeProvider((TimeProvider) tpStub);
// Exercise SUT
String result = sut.getCurrentTimeAsHtmlFragment();
// Verify outcome
String expectedTimeString ="Midnight";
assertEquals("Midnight", expectedTimeString, result);

- There is no Test Stub implementation to examine for this test because
the JMock framework implements the Test Stub using reflection

10

Mock Object

How do we implement
Behavior Verification for
indirect outputs of the
SUT?

How can we verify logic
independently when it
depends on indirect
inputs from other
software components?

We replace an object on
which the SUT depends
on with a test specific
object that verifies it is
being used correctly by
the SUT.

FIX
>

Creation Mock
Setup / Object
Installation) Expectations
I Indirect TN
Exercise
—— EXercise—p S UT Output } %
: o/ 8
Verity Final Veerification O
O
Teardown

11

How it Works

- Define a Mock Object that implements the same interface as an object on
which the SUT depends.

 During the test, configure the Mock Object with the values with which it
should respond to the SUT and the method calls (complete with expected
arguments) it should expect from the SUT.

- Before exercising the SUT, install the Mock Object so that the SUT uses it
instead of the real implementation.

- When called during SUT execution, the Mock Object compares the actual
arguments received with the expected arguments using equality assertions
and fails the test if they don’t match.

12

Implementation

- Tests written using Mock Objects look different from more traditional tests
because all the expected behavior must be specified before the SUT is
exercised.

* This makes the tests harder to write and to understand.

 The standard Four-Phase Test Is altered somewhat when we use Mock
Objects.

* In particular, the fixture setup phase of the test is broken down into three
specific activities and the result verification phase more or less
disappears,except for the possible presence of a call to the “final verifi
cation” method at the end of the test.

13

Test Structure

* Fixture setup:
» Test constructs Mock Object.
- Test configures Mock Obiject.

- Test installs Mock Obiject into SUT.

 Test sets expectations on mock object. i.e. what behavior it expects to
be triggered by SUT

 Exercise SUT:
- SUT calls Mock Object; Mock Object does assertions.
* Result verification:
- Test calls “final verification” method.
* Fixture teardown:

« No impact.
14

—xample -Motivation

(from JMock Documentation)

A Publisher sends messages to zero
or one Subscriber.

We want to test the Publisher, which
Involves testing its interactions with its
Subscribers.

We will test that a Publisher sends a
message to a single registered
Subscriber.

To test interactions between the
Publisher and the Subscriber we will
use a mock Subscriber object

public interface Subscriber

{

volid receive(String message);

}

public class Publisher

{

private Subscriber subscriber;

public void add(Subscriber subscriber)

{

this.subscriber = subscriber;

}

public void publish(String message)
{
1f (subscriber != null)
subscriber.receive(message);

15

Configure Test Case

. First we must import the import org.jmock.Expectations;

. : import org.jmock.Mockery;
JMock classes, define our import org.jmock.integration.junit4.JMock;

test fixture class and create import org.jmock.integration.junit4.JUnit4Mockery;
a "Mockery" that represents |import org.junit.Test;

the context in which the import org.junit.runner.RunWith;

Publisher exists. import sut.Publisher;

import sut.Subscriber;

« The context mocks out the @RuniWith(IMock.class)
objects that the Publisher public class PublisherTest
collaborates with (in this t .
_ Mockery context = new JUnit4Mockery();
case a Subscriber) and .
checks that they are used }

correctly during the test.

16

Fixture Setup (1)

« Write the method that will perform our test - first set up the context in which our
test will execute:

e Construct: create a Publisher to test.

* Configure: create a mock Subscriber that should receive the message.

* Install: register the Subscriber with the Publisher.

@Test
public void oneSubscriberReceivesAMessage()

{
Publisher publisher = new Publisher();

final Subscriber subscriber = context.mock(Subscriber.class);
publisher.add(subscriber);

17

Fixture Setup (2)

« Define expectations on the mock @Test
Subscriber that specify the public void oneSubscriberReceivesAMessage()
methods that we expect to be L
called upon it during the test run.
context.checking(new Expectations()

i1
« We expect the receive method to oneOf (subscriber).receive(message);

be called once with a single 113

argument, the message that will o
be sent. ¥

18

http://www.jmock.org/expectations.html

—xercise SUT

 We then execute the

code that we want to
test.

@Test
public void oneSubscriberReceivesAMessage()

{

publisher.publish(message);

19

Result Verification

« After the code under test has
finished our test must verify that
the mock Subscriber was called as
expected.

- If the expected calls were not
made, the test will fail. The
MockODbjectTestCase does this
automatically.

* You don't have to explicitly verify
the mock objects in your tests.

@Test
public void oneSubscriberReceivesAMessage()

{

Publisher publisher = new Publisher();
final Subscriber subscriber

= context.mock(Subscriber.class);
publisher.add(subscriber);

final String message = "message”;
context.checking(new Expectations()

11

oneOf (subscriber).receive(message);

I3 DN

publisher.publish(message);

20

—xpecting Methods More (or Less) than Once

oneOf The invocation is expected once and once only.

exactly(n).of The invocation is expected exactly n times. Note: one is a
convenient shorthand for exactly(1).

atLeast(n).of The invocation is expected at least n times.
atMost(n).of The invocation is expected at most n times.

between(min, max).of The invocation is expected at least min times and at
most max times.

allowing The invocation is allowed any number of times but does not have
to happen.

ignoring The same as allowing. Allowing or ignoring should be chosen to
make the test code clearly express intent.

never The invocation is not expected at all. This is used to make tests more
explicit and so easier to understand.

21

. .
e— — — R e— — — — S— — — e e— — — — — —:- e

.................................... Test Double Patterns,, .
Dummy Fake Test Test Mock
Object Object Stub Spy Object
... l
Vst Do
Test-Specific . Construction
Subclass Test % Confiugrable
Subclassed Test Double k-~ _festDouble
Double ~ <\ Hard -Coded
N :“| Test Double
/ N
/ e iieiiiiesescessscsssssasensssensnsaanel

22

http://www.growing-object-oriented-software.com/

“Test-Driven Development (TDD) is
now an established technique for

delivering better software faster. GROWING

TDD is based on a simple idea:

write tests for your code before you OBJECT— ORIENTED
write the code itself. However, this SOFTWARE
)

"simple" idea takes skill and
judgment to do well. Now there's a
practical guide to TDD that takes
you beyond the basic concepts.
Drawing on a decade of experience
building real-world systems, two
TDD pioneers show how to let tests
guide your development and “grow”
software that is coherent, reliable,
and maintainable.”

(GUIDED BY 1ESTS

STEVE FREEMAN
NAT PrYCE

Foreword by Kent Beck
Afterword by Tim Mackinnon

