REST :

Representation State Transfer

RESTful

API

—Xxamples -

» Twitter API

- Google Maps
 Twillio
 Github

« Foursquare

* blogger.com

q

=" RESTful AP

- REST is an “Architectural Style” - enumerating an
approach to building distributed systems.

* It embodies an approach that aims to maximize the
infrastructure of http infrastructure deployed in the
public internet, enabling secure, scalable distributed
systems that do not require expensive, complex
alternative infrastructure.

REST

Representational State Transfer
(REST) is an architectural style that
abstracts the architectural elements

within a distributed hypermedia

system.[1] REST ignores the details of
component implementation and
protocol syntax in order to focus on the
roles of components, the constraints
upon their interaction with other
components, and their interpretation of

significant data elements.[2]REST has

emerged as a predominant web API

design model

O REILLY"

Copyrighted Material

REST in Practice

Hypermedia and Systems Architecture

Jim Webber
Savas Parastatidis
lan Robinson

Foreword by Martin Fowler

REST: The Web Used Correctly

» A system or application architecture
+ ... that uses HTTP, URI and other Web standards “correctly”

- ... I1s “on” the Web, not tunnelled through it ... also called ““RESTful HTTP”

REST API
Design

API

[
DB data

GET ftasks - display all tasks

POST /Ntasks - create a new task
GET ftasks/{id} - display a task by ID
PUT ftasks/{id} - update a task by 1D
DELETE Ntasks/{id} - delete a task by 1D

Client

Rest Principles

1: Give Everything and ID

2: Link Things Together

3: Use Standard HTTP Methods

4: Allow for Multiple Representations

5: Communicate Statelessly

1. Give Every Thing and ID

Lv4a4e0-8497-4183-8eaa-..

+ http://example.com/customers/1234 0522526505407 4a48-8867-8095395.
uuid:">1e1baf59-3d6-4196-9166-66095 7231,
* http://example.com/orders/2007/10/776654 urm:uuid:">7efbbha-a52a-46c0-a16b-03860d356882
"umuuid:">4d0echdb-dcba-4047-8351-29283adfb7c ¢
* http://example.com/products/4554 "urm:uvid:">20f19a35-401b-45a6-a54e-084122adcf80<

Urn:uuid:">3a17efd0-adfe-4899-9d4c-508ac5916450¢
- http://example.com/processes/sal-increase-234 wyuid:">02e42ef0-The7-4c60-b8d9-790h79fa38>

‘c:">6¢8b3ch4-cOfe-4afd-ac63-ch2a9060
4f0463-67aa-44e8-9712->7

2. Link Things Together

<order self="http://example.com/orders/1234°>

<amount>Z23</amount>

<product ref="http://example.com/products/4554° />

<customer ref="http://example.com/customers/1234° />

</order>

3: Use Standard HT TP Methods

e HTTP PUT

e HTTP GET

e HTTP POST

e HTTP DELETE

GET [retrieve information, possibly cached

PUT Update or create with known ID

POST Create or append sub-resource
DELETE (Logically) remove

4: Allow for Multiple Representations

GET /donors/1234 GET /donors/1234

Host: example.com Host: example.com

Accept: application/json Accept: application/xml

{ <donor>
"firstName" : "fred", <firstName> “fred” </firstName>
"lastName" : "simpson", <lastName> “simpson” </lastName>
"email" . "fred@simpson.com", <email> “fred@simpsc» ~om? _-/om~sls

D\

"password” : "secr <password> “secret”

h </donor>

5: Communicate Statelessly

GET /customers/1234

Host: example.com
Accept: application/vnd.mycompany.customer+xml

<customer><order ref=’./orders/46’</customer>

... shutdown
... update software
... replace hardware

GET /customers/1234/orders/46
Host: example.com
Accept: application/vnd.mycompany.order+xml

<order>...</order>

10

OrderManagementService .

+ getOrders()

+ submitOrder()

+ getOrderDetails()

+ getOrdersForCustomers()
+ updateOrder()

+ addOrderltem()

+ cancelOrder()

CustomerManagementService b

+ getCustomers()

+ addCustomer()

+ getCustomerDetails()
+ updateCustomer()

+ deleteCustomer()

«interface»
Resource

GET
PUT
POST
DELETE

/orders

GET - list all orders
----- PUT - unused
POST - add a new order
DELETE - unused

/forders/id}
GET - get order details
= = = = 4 PUT - update order
POST - add item
DELETE - cancel order

GET - list all customers

= ===9PUT - unused
POST - add new customer
DELETE - unused

/customers/{id}

GET - get customer details
- === PUT - update customer

POST - unused

DELETE - delete customer

1
1
]
]
)
|
1
]
1
2
|
|
|
|
|
|
| /customers
|
1
+
]
]
]
]
1
]
1
1
]
L

/customers/id}/orders
GET - get all orders for customer
----- PUT - unused
POST - add order

DELETE - cancel all customer orders

11

Rest Endpoints Verbs

- Comparing database (sql) and HTTP Verbs

SQL REST
SELECT GET
INSERT POST
UPDATE PUT
DELETE DELETE

Action varies with HT TP Method

URI HTTP METHOD ACTION PERFORMED
/status/ GET Get all status
/status/3 GET Get status with id 3
/status/ POST Add a new status
/status/4 PUT Edit status with id 4
/status/4 DELETE Delete status with id 4

HT TP Response Codes
HTTP Status Codes Informational
200 OK
201 Resource created
204 No content
400 Bad Request
401 Unauthorised
404 Not found
405 Method Not allowed
500 Internal Server Error

