
Liskov Substitution Principle

Produced

by:

Department of Computing and Mathematics

http://www.wit.ie/

Eamonn de Leastar (edeleastar@wit.ie)

Dr. Siobhán Drohan (sdrohan@wit.ie)

mailto:edeleastar@wit.ie
mailto:sdrohan@wit.ie

SOLID Class Design Principles

In this talk, we will refer to the SOLID

principles examples in this book and

also this website.

SOLID five principles for object-oriented

class design i.e. best guidelines for

building a maintainable

object-oriented system.

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

SOLID Class Design Principles

S Single Responsibility Principle (SRP). Classes should have one, and only one,
reason to change. Keep your classes small and single-purposed.

O Open-Closed Principle (OCP). Design classes to be open for extension but
closed for modification; you should be able to extend a class without
modifying it. Minimize the need to make changes to existing classes.

L Liskov Substitution Principle (LSP). Subtypes should be substitutable for their
base types. From a client’s perspective, override methods shouldn’t break
functionality.

I Interface Segregation Principle (ISP). Clients should not be forced to depend
on methods they don’t use. Split a larger interface into a number of smaller
interfaces.

D Dependency Inversion Principle (DIP). High-level modules should not depend on
low-level modules; both should depend on abstractions. Abstractions should not
depend on details; details should depend on abstractions.

Barbara Liskov

4

https://www.novoda.com/blog/designing-something-solid/

https://www.novoda.com/blog/designing-something-solid/

https://www.novoda.com/blog/designing-something-solid/

sunglasses interface would
have fairly simple rules like:
• shields from the sun;
• attaches to a face.

Implementing the sunglasses
interface with suntan lotion
would seem to make sense:
• it shields from the sun and

attaches to the face.

https://www.novoda.com/blog/designing-something-solid/

https://www.novoda.com/blog/designing-something-solid/

But semantically the expected behaviour is different enough to
cause behavioural problems - in this case, by stinging your eyes!

sunglasses interface would
have fairly simple rules like:
• shields from the sun;
• attaches to a face.

Implementing the sunglasses
interface with suntan lotion
would seem to make sense:
• it shields from the sun and

attaches to the face.

https://www.novoda.com/blog/designing-something-solid/

https://www.novoda.com/blog/designing-something-solid/

But semantically the expected behaviour is different enough to
cause behavioural problems - in this case, by stinging your eyes!

“Don't implement interfaces in a way that
breaks expected semantic behaviour.”

sunglasses interface would
have fairly simple rules like:
• shields from the sun;
• attaches to a face.

Implementing the sunglasses
interface with suntan lotion
would seem to make sense:
• it shields from the sun and

attaches to the face.

https://www.novoda.com/blog/designing-something-solid/

“Don't implement interfaces in a way that
breaks expected semantic behaviour.”

LSP – Formal Definition

Methods that refer to base classes must be able to use objects
of derived types without knowing it.

If for each object o1 of type S there is an

object o2 of type T such that for all

programs P defined in terms of T, the

behaviour of P is unchanged when o1 is

substituted for o2 then S is a subtype of T.

Barbara Liskov, “Data Abstraction and

Hierarchy,” SIGPLAN Notices, 23,5 (May, 1988).

T

S

extends

O1: S

O2: T

LSP: Simple Violation (and fix)

Simple Violation of LSP

drawShapes must be modified whenever new derivatives of
Shape are presented. What other SOLID principle does it
violate?

void drawShape (Shape shape)

{

if (shape instanceof Square)

{

drawSquare ((Square)shape);

}

else if (shape instance of Circle)

{

drawCircle ((Circle) shape);

}

}

violates LSP
because it must
know of every
derived type of

Shape.

references a base
type Shape

Adhering to LSP

drawShape now
adheres to LSP

class Shape

{

void draw()

{//…}

}
void drawShape (Shape s)

{

s.draw();

}

class Circle extends Shape

{

private double itsRadius;

private Point itsCenter;

public void draw()

{ //… }

}

class Square extends Shape

{

private double itsSide;

private Point itsTopLeft;

public void draw()

{ //… }

}

LSP: Semantic Violation

LSP

An object inheriting from

a base class, interface,

or other abstraction

must be semantically substitutable

for the original abstraction.

http://www.codemag.com/article/1001061

http://www.codemag.com/article/1001061

Rectangle

Assume the Rectangle class is released for general use in
the company.

class Rectangle

{

private int width;

private int height;

public void setWidth (int width)

{...}

public void setHeight (int height)

{...}

public int getWidth ()

{...}

public int getHeight ()

{...}

}

Rectangle

17

Square

Introduce Square as a subclass of
Rectangle.

Inheritance “is a” relationship:

A Square is a rectangle.

However, there is a subtle
difference…it’s width and height are
equal:

Square only needs one dimension
but both are inherited.

Rectangle

Square

class Rectangle

{

private int width;

private int height;

public void setWidth (int width)

{...}

public void setHeight (int height)

{...}

public int getWidth ()

{...}

public int getHeight ()

{...}

}

Square

For a Square, both setWidth() and
setHeight() should not vary independently.

Client could easily call one and not the other
– thus compromising the Square.

Rectangle

Square

class Rectangle

{

private int width;

private int height;

public void setWidth (int width)

{...}

public void setHeight (int height)

{...}

public int getWidth ()

{...}

public int getHeight ()

{...}

}

Square

Potential solution:

implement setWidth() and setHeight() in
Square class.

Each of these methods should then make
sure both width & height are adjusted.

Rectangle

Square

20

Square

Rectangle

Square

class Square extends Rectangle

{

public void setWidth (int width)

{

super.setWidth(width);

super.setHeight(width);

}

public void setHeight (int height)

{

super.setWidth(height);

super.setHeight(height);

}

}

Potential solution implementation:

21

Polymorphism

Polymorphism ensures, if the f() method:

is passed a Rectangle, then its width will be
adjusted.

is passed a Square, then both height and width will
be changed

Assume model is consistent & correct.

However….

void f (Rectangle r)

{

r.setWidth(5);

} Rectangle

Square

22

More Subtle Problem

If r is a Rectangle instance…

g() methods works as expected

If r is a Square instance…

g() assertion fails

g() assumes that width and height of a Rectangle can be varied
independently.

Substitution of a Square violates this semantic assumption.

Square violates LSP.

void g (Rectangle r)

{

r.setWidth(5);

r.setHeight(4);

assert (r.getWidth() * r.getHeight()) == 20;

}

LSP: Semantic Violation

RectangleSquare !=

LSP: Subtypes should be substitutable for their base types.

25

Validating the Model

A model, viewed in isolation, cannot be
meaningfully validated.

The validity of a model can only be
expressed in terms of its clients:

Examining the final version of the Square and
Rectangle classes in isolation, we found that they
were self consistent and valid.

When we examined from the viewpoint of g()
(which made reasonable assumptions) the model
broke down.

Rectangle

Square

26

Validating the Model

When considering whether a
design is appropriate or not, it
must be examined in terms of the
reasonable assumptions that will
be made by the users of that
design.

Rectangle

Square

Behavioural Problems

A square might be a rectangle, but a Square object is not a
Rectangle object.

the behaviour of a Square object is not consistent with the behaviour of a
Rectangle object.

The LSP makes clear that the inheritance relationship pertains to
behaviour that clients depend upon.

Rectangle

Square

!=

With LSP…

“is-a” really means

“behaves exactly like”

Except where otherwise noted, this content is

licensed under a Creative Commons Attribution-

NonCommercial 3.0 License.

For more information, please see

http://creativecommons.org/licenses/by-nc/3.0/

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

