
Dependency Inversion Principle (DIP)

Produced

by:

Department of Computing and Mathematics

http://www.wit.ie/

Dr. Siobhán Drohan (sdrohan@wit.ie)

Eamonn de Leastar (edeleastar@wit.ie)

mailto:sdrohan@wit.ie
mailto:edeleastar@wit.ie

SOLID Class Design Principles

In this talk, we will refer to the

SOLID principles examples in this

book.

SOLID  five principles for object-

oriented class design i.e.

best guidelines for building a

maintainable object-oriented

system.

S Single Responsibility Principle (SRP). Classes should have one, and only one,

reason to change. Keep your classes small and single-purposed.

O Open-Closed Principle (OCP). Design classes to be open for extension but

closed for modification; you should be able to extend a class without

modifying it. Minimize the need to make changes to existing classes.

L Liskov Substitution Principle (LSP). Subtypes should be substitutable for their base

types. From a client’s perspective, override methods shouldn’t break functionality.

I Interface Segregation Principle (ISP). Clients should not be forced to depend

on methods they don’t use. Split a larger interface into a number of smaller

interfaces.

D Dependency Inversion Principle (DIP). High-level modules should not depend

on low-level modules; both should depend on abstractions. Abstractions

should not depend on details; details should depend on abstractions.

SOLID Class Design Principles

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

Dependency Inversion Principle (DIP) – Basic Idea

Consider a (bad!) situation where a high-level
module depends on a low-level module.

High-level Module

Contains the
important policy
decisions and

business models of
an application. Low-level Module

High-level module
depends on this

module.

depends on

Dependency Inversion Principle (DIP) – Basic Idea

Consider a (bad!) situation where a high-level
module depends on a low-level module.

Changes to the
lower-level module
could directly effect

the higher-level
module and force it

to change.

High-level Module

Contains the
important policy
decisions and

business models of
an application. Low-level Module

High-level module
depends on this

module.

depends on

Dependency Inversion Principle (DIP) – Basic Idea

Consider a (bad!) situation where a high-level
module depends on a low-level module.

Changes to the
lower-level module
could directly effect

the higher-level
module and force it

to change.

High-level Module

Contains the
important policy
decisions and

business models of
an application. Low-level Module

High-level module
depends on this

module.

depends on

Dependency Inversion Principle (DIP) – Basic Idea

• It is the high-level, policy-setting modules that ought to
be influencing the low-level detailed modules.

• The modules that contain the high-level business rules
should take precedence over, and be independent of, the
modules that contain the implementation details.

High-level modules simply should not
depend on low-level modules in any way.

Consider a (bad!) situation where a high-level
module depends on a low-level module.

Dependency Inversion Principle (DIP) – Basic Idea

High-level modules simply should not
depend on low-level modules in any way.

And taking this idea one step further…

Dependency Inversion Principle (DIP) – Basic Idea

High-level Module

We want to be able to re-use these!

If high-level modules are
independent of low-level modules,

the high-level modules can be easily
reused.

Low-level Module

We are fairly good at
reusing these e.g. utilities,
libraries, components, etc.

Dependency Inversion Principle (DIP) – Basic Idea

High-level Module

We want to be able to re-use these!

If high-level modules are
independent of low-level modules,

the high-level modules can be easily
reused.

Low-level Module

We are fairly good at
reusing these e.g. utilities,
libraries, components, etc.

A. High-level modules should not depend on low-level
modules. Both should depend on abstractions.

B. Abstractions should not depend upon details. Details
should depend upon abstractions. (more on this later).

Two Layering Approaches

Naïve and Inverted

DIP – Naïve Layering

The high-level Policy layer uses a lower-level
Mechanism layer, which in turn uses a Utility layer.

Problem: the Policy layer is sensitive to changes all
the way down in the Utility layer.

DIP – Inverted Layering (more appropriate!)

Each upper-level
layer declares an
abstract interface
for the services it
needs.

DIP – Inverted Layering (more appropriate!)

The lower-level
layers are then
realized from these
abstract interfaces.

Each higher-level
class uses the next
lowest layer
through the
abstract interface.

DIP – Inverted Layering (more appropriate!)

Now, the upper
layers do not
depend on the lower
layers.

Instead, the lower
layers depend on
abstract service
interfaces declared
in the upper layers.

DIP – Inverted Layering (more appropriate!)

PolicyLayer can be
reused in any context
that defines lower-
level modules
that conform to the
PolicyService-
Interface.

 This is called
Dependency
Inversion.

Dependency inversion can be applied
wherever one class sends a message to

another.

Consider this simple example that
violates DIP.

A Simple Example (that violates DIP)

A Simple Example (that violates DIP)

The Button object,
receives a Poll

message and
determines whether
the user has pressed

the button.

A Simple Example (that violates DIP)

Button messages the lamp. On
receiving a:
• TurnOn message, the Lamp

object turns on a light.
• TurnOff message, it turns

off that light.

messages

The Button object,
receives a Poll

message and
determines whether
the user has pressed

the button.

A Simple Example (that violates DIP)

public class Button

{

private Lamp lamp;

public void Poll()

{

if (/*some condition*/)

lamp.TurnOn();

}

}

Code

Example:

messages

A Simple Example (that violates DIP)

messages

Naïve Implementation!

The Button class depends

directly on the Lamp class.

A Simple Example (that violates DIP)

messages

DEPENDENCY: This dependency implies that Button
will be affected by changes to Lamp.

REUSE: Also, it will not be possible to reuse
Button to control, say, a Motor object. In
this model, Button objects control Lamp
objects and only Lamp objects.

messages

Let’s now invert this dependency on
Lamp and see what happens!

messages

becomes

messages

implements

messages

implements

Button now holds an association to something
called a ButtonServer, which provides the interfaces
that Button can use to turn something on or off.

Button can now control anything implementing
ButtonServer  flexibility and reuse!

messages

implements

Lamp implements the
ButtonServer

interface.

Lamp is now doing the

depending rather than
being depended on.

Button now holds an association to something
called a ButtonServer, which provides the interfaces
that Button can use to turn something on or off.

Button can now control anything implementing
ButtonServer  flexibility and reuse!

messages

implements

A. High-level modules should not depend on low-level
modules. Both should depend on abstractions.

B. Abstractions should not depend upon details.
Details should depend upon abstractions.

Dependency
Inversion
Principle

(DIP)

messages

implements

A. High-level modules should not depend on low-level
modules. Both should depend on abstractions.

B. Abstractions should not depend upon details.
Details should depend upon abstractions.

This approach is critically

important for the

construction of code that

is resilient to change.

Since abstractions and

details are isolated from

each other, the code is

much easier to maintain.

Except where otherwise noted, this content is

licensed under a Creative Commons Attribution-

NonCommercial 3.0 License.

For more information, please see

http://creativecommons.org/licenses/by-nc/3.0/

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

