Dependency Inversion Principle (DIP)

Produced Dr. Siobhan Drohan (sdrohan@wit.ie)
by:

Eamonn de Leastar (edeleastar@wit.ie)

/ Waterford Institute of Technology Department of Computing and Mathematics
¥/ INSTITIUID TEICNEOLAIOCHTA PHORT LAIRGE http://www.wit.ie/

mailto:sdrohan@wit.ie
mailto:edeleastar@wit.ie

SOLID Class Design Principles

In this talk, we will refer to the
SOLID principles examples in this
book. Clean Code

A Handbook of Agile Software Craftsmanship

SOLID -> five principles for object- - -
oriented class design i.e. -’_

best guidelines for building a
maintainable object-oriented
system. me— o

SOLID Class Design Principles

S Single Responsibility Principle (SRP). Classes should have one, and only one,
reason to change. Keep your classes small and single-purposed.

O Open-Closed Principle (OCP). Design classes to be open for extension but
closed for modification; you should be able to extend a class without
modifying it. Minimize the need to make changes to existing classes.

L Liskov Substitution Principle (LSP). Subtypes should be substitutable for their base
types. From a client’s perspective, override methods shouldn’t break functionality.

| Interface Segregation Principle (ISP). Clients should not be forced to depend
on methods they don’t use. Split a larger interface into a number of smaller
Interfaces.

D Dependency Inversion Principle (DIP). High-level modules should not depend
on low-level modules; both should depend on abstractions. Abstractions
should not depend on details; details should depend on abstractions.

Dependency Inversion Principle

Would you solder a lamp directly
to the electrical wiring in a wall?

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

https://zeroturnaround.com/rebellabs/object-oriented-design-principles-and-the-5-ways-of-creating-solid-applications/

Dependency Inversion Principle (DIP) — Basic Idea

Consider a (bad!) situation where a high-level
module depends on a low-level module.

High-level Module

Contains the
important policy
decisions and
business models of
an application.

depends on

Low-level Module

* High-level module
depends on this
module.

Dependency Inversion Principle (DIP) — Basic Idea

Consider a (bad!) situation where a high-level
module depends on a low-level module.

High-level Module

Contains the
important policy
decisions and
business models of
an application.

depends on

Changes to the
lower-level module
could directly effect

the higher-level
module and force it

to change.

>

Low-level Module

High-level module
depends on this
module.

Dependency Inversion Principle (DIP) — Basic Idea

Consider a (bad!) situation where a high-level
module depends on a low-level module.

High-level Module

Contains the
important policy
decisions and
business models of
an application.

depends on

hanges to the
4 _|level module
co effect
the hi

module and Pﬂl

to change.

>

Low-level Module

High-level module
depends on this
module.

Dependency Inversion Principle (DIP) — Basic Idea

Consider a (bad!) situation where a high-level
module depends on a low-level module.

» It is the high-level, policy-setting modules that ought to
be influencing the low-level detailed modules.

 The modules that contain the high-level business rules
should take precedence over, and be independent of, the
modules that contain the implementation details.

High-level modules simply should not
depend on low-level modules in any way.

Dependency Inversion Principle (DIP) — Basic Idea

And taking this idea one step further...

High-level modules simply should not
depend on low-level modules in any way.

Dependency Inversion Principle (DIP) — Basic Idea

High-level Module

We want to be able to re-use these!

If high-level modules are Low-level Module
independent of low-level modules, _
the high-level modules can be easily We are fairly good at
reused. reusing these e.g. utilities,
libraries, components, etc.

Dependency Inversion Principle (DIP) — Basic Idea

High-level Module

We want to be able to re-use these!

If high-level modules are Low-level Module
independent of low-level modules, _
the high-level modules can be easily We are fairly good at
reused. reusing these e.g. utilities,
libraries, components, etc.

A. High-level modules should not depend on low-level
modules. Both should depend on abstractions.

B. Abstractions should not depend upon details. Details
should depend upon abstractions. (more on this later).

Two Layering Approaches

Naive and Inverted

DIP — Naive Layering

Policy Layer |[--—-------------—

Mechanism
Layer

Utility Layer

The high-level policy layer uses a lower-level
Mechanism layer, which in turn uses a Utility layer.

Problem: the Policy layer is sensitive to changes all
the way down in the utility layer.

DIP — Inverted Layering (more appropriate!)

Each upper-level

layer declares an
abstract interface
for the services it
needs.

Policy I
«interface»
; Policy Service
e Int);rface
i
Mechanism
«|nterface»
Mechanism _| Mechanism
Layer = Service
Interface
Utility
Utility

Layer

DIP — Inverted Layering (more appropriate!)

Policy ’
«interface»
. Policy Service
CSELISL Int):arface
‘.l:l.‘
Mechanism
«|nterface»
Mechanism _| Mechanism
Layer = Service
Interface
Utility

The lower-level
layers are then
realized from these
abstract interfaces.

Each higher-level
class uses the next
lowest layer
through the
abstract interface.

Utility
Layer

DIP — Inverted Layering (more appropriate!)

Now, the upper
layers do not
depend on the lower
layers.

Instead, the lower
layers depend on
abstract service
interfaces declared
in the upper layers.

Policy ’
«interface»
. Policy Service
CSELISL lnt);rface
n
Mechanism
«|nterface»
Mechanism _| Mechanism
Layer = Service
Interface
Utility
Utility

Layer

DIP — Inverted Layering (more appropriate!)

Policy ‘
«interface»
. Policy Service
WL : lnt);rface
Mechanism
«|nterface»
Mechanism _| Mechanism
Layer = Service
Interface
Utility

Utility
Layer

PolicyLayer can be
reused in any context
that defines lower-
level modules

that conform to the
PolicyService-
Interface.

- This is called
Dependency
Inversion.

Dependency inversion can be applied
wherever one class sends a message to
another.

Consider this simple example that
violates DIP.

A Simple Example (that violates DIP)

Button

+ Poll()

Lamp

:}-+HHWDHU

+ TurnOf()

A Simple Example (that violates DIP)

Button Lamp
| + TurnOn()
F R0 + TurnOFf()

The Button object,
receives a Poll

message and
determines whether
the user has pressed
the button.

A Simple Example (that violates DIP)

Lamp
Button MeSsSSsages :
| + TurnOn()

s | + TurnOff()
The Button object, Button messages the lamp. On

Freceives a Poll receiving a:

message and TurnOn message, the Lamp

determines whether object turns on a light.
the user has pressed « TurnOff message, it turns

the button. off that light.

A Simple Example (that violates DIP)

Lamp
BUttDn messages -~
4 TurnOn()
+ Poll() + TurnOFf()

public class Button

{

private Lamp lamp;

Code public void Poll ()

Example: {
if (/*some condition*/)

lamp.TurnOn () ;

A Simple Example (that violates DIP)

Button Lamp

MeSsSSsages

=

+ TurnOn()

F R0 + TurnOFf()

Nalve Implementation!

The Button class depends
directly on the Lamp class.

A Simple Example (that violates DIP)

Button

+ Poll()

DEPENDENCY:

REUSE:

Lamp
messages

=1 4+ TurnOn()
+ TurnOff()

This dependency implies that Button
will be affected by changes to Lamp.

Also, it will not be possible to reuse
Button to control, say, a Motor object. In

this model, Button objects control Lamp
objects and only Lamp objects.

La
Button messages =
' | + TurnOn()
ol + TurnOff()

Let’s now invert this dependency on
Lamp and see what happens!

Lamp

Button messages
' = +TurnOn()
F FORU + TurnOff()
becomes
«interface»
Button — ButtonServer
=1
+ polil +turnOff()
+turnOn()

Timplements

Lamp

Button now holds an association to something
called a ButtonServer, which provides the interfaces
that Button can use to turn something on or off.

Button can now control anything implementing
ButtonServer - flexibility and reuse!

«interface»

ButtonServer

Button messages

—

+ poli) " +turnOM()
+turnOn()

Implements

Lamp

Button now holds an association to something
called a ButtonServer, which provides the interfaces
that Button can use to turn something on or off.

Button can now control anything implementing
ButtonServer - flexibility and reuse!

«interface»
r ButtonServer
Button messages

: =
Lamp implements the + poll() -
ButtonServer Itﬁltgﬂng
interface. | o)
Lamp IS how doing the implements
depending rather than
being depended on. e

A. High-level modules should not depend on low-level
modules. Both should depend on abstractions.

B. Abstractions should not depend upon details.
Details should depend upon abstractions.

«interface»
ButtonServer
Button messages
Dependency + poll() ' +turnOF()
Inversion +HurnOn()
Principle |
(DIP) implements

Lamp

A. High-level modules should not depend on low-level
modules. Both should depend on abstractions.

B. Abstractions should not depend upon details.
Details should depend upon abstractions.

: - " «interface»
This approach Is critically — | B e
Important for the __ [imessages
cc_)nstru_c_tlon of code that + poll() +urnOM()
IS resilient to change. +turnOn()
Sinc_e abst_ractions and mplements
detalls are isolated from |
each other, the code Is
. : : Lamp
much easier to maintain.

I.
[

R

b

Waterford Institute of Technology

HETITIOID TEICNEOLAIOCHTA PHORT LURCE

H©

Except where otherwise noted, this content is
licensed under a Creative Commons Attribution-

NonCommercial 3.0 License.

For more information, please see
http://creativecommons.org/licenses/by-nc/3.0/

0

elearning
support unit

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

